Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Hand gesture recognition using discrete wavelet transform and hidden Markov models Erizka Banuwati Candrasari; Ledya Novamizanti; Suci Aulia
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.13725

Abstract

Gesture recognition based on computer-vision is an important part of human-computer interaction. But it lacks in several points, that was image brightness, recognition time, and accuracy. Because of that goal of this research was to create a hand gesture recognition system that had good performances using discrete wavelet transform and hidden Markov models. The first process was pre-processing, which done by resizing the image to 128x128 pixels and then segmented the skin color. The second process was feature extraction using the discrete wavelet transform. The result was the feature value in the form of a feature vector from the image. The last process was gesture classification using hidden Markov models to calculate the highest probability of feature matrix which had obtained from the feature extraction process. The result of the system had 72% of accuracy using 150 training and 100 test data images that consist five gestures. The newness thing found in this experiment were the effect of acquisition and pre-processing. The accuracy had been escalated by 14% compared to Sebastien’s dataset at 58%. The increment effect propped by brightness and contrast value.
FPGA-based implementation of speech recognition for robocar control using MFCC Bayuaji Kurniadhani; Sugondo Hadiyoso; Suci Aulia; Rita Magdalena
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.12615

Abstract

This research proposes a simulation of the logic series of speech recognition on the MFCC (Mel Frequency Spread Spectrum) based FPGA and Euclidean Distance to control the robotic car motion. The speech known would be used as a command to operate the robotic car. MFCC in this study was used in the feature extraction process, while Euclidean distance was applied in the feature classification process of each speech that later would be forwarded to the part of decision to give the control logic in robotic motor. The test that has been conducted showed that the logic series designed was precise here by measuring the Mel Frequency Warping and Power Cepstrum. With the achievement of logic design in this research proven with a comparison between the Matlab computation and Xilinx simulation, it enables to facilitate the researchers to continue its implementation to FPGA hardware.
Automatic face and VLP’s recognition for smart parking system Reivind P. Persada; Suci Aulia; Burhanuddin D.; Sugondo H.
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.11746

Abstract

One of the concerning issues regarding smart city is Smart Parking. In Smart Parking, some researchers try to provide solutions and breakthroughs on several research topics among security systems, the availability of single space, an IoT framework, etc. In this study, we proposed a security system on Smart Parking based on face recognition and VLP’s (Vehicle License Plates) identification. In this research, SSIM (Structural Similarity) method as part of IQA has been applied due to its reliability and simple computation for face detection and recognition process. From the test results of 30 data, obtained the highest SSIM value 0.83 with the highest accuracy rate of 76.67%. That level of accuracy still has not reached the implementation standard of 99.9%. So that it still needs to be improved in the future studies, especially in the filtering noise section.