Claim Missing Document
Check
Articles

Sistem Informasi Manajemen Rumah Sakit Dalam Meningkatkan Efisiensi Ilham Fahrul Pratama; Eko Purwanto
COMSERVA : Jurnal Penelitian dan Pengabdian Masyarakat Vol. 3 No. 07 (2023): COMSERVA : Jurnal Penelitian dan Pengabdian Masyarakat
Publisher : Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59141/comserva.v3i07.1044

Abstract

Seiring dengan tingginya kebutuhan masyarakat terhadap layanan kesehatan menuntut instansi kesehatan seperti Rumah Sakit untuk meningkatkan kinerja dan kualitas pelayanannya. Dalam rangka memberikan pelayanan prima, Rumah Sakit sudah seharusnya mampu menetapkan kebijakan-kebijakan strategis yang berkaitan dengan sumber daya manusia, internal organisasi, maupun manajemen rumah sakit. Melalui kebijakan-kebijakan strategis tersebut diharapkan Rumah Sakit dapat lebih efisien, efektif, responsif dan inovatif dalam hal penyelenggaraan pelayanan sehingga masyarakat atau publik yang merupakan pengguna layanan merasa puas atas pelayanan yang diberikan Rumah Sakit. Sistem Informasi Manajemen Rumah Sakit atau SIMRS merupakan salah satu kebijakan strategis yang dapat diterapkan Rumah Sakit agar penyelenggaraan pelayanan Rumah sakit dapat berlangsung secara lebih efisien. Penulisan artikel ini bertujuan menganalisis mengetahui bagaimana sistem informasi manajemen rumah sakit dalam meningkatkan efisiensi. Pendekatan atau metode kepustakaan (library research) digunakan dalam penelitian ini Hasil tulisan ini menunjukkan bahwa implementasi SIMRS dapat meningkatkan efisiensi rumah sakit baik dari segi proses atau alur pelayanan. Hal ini mendorong berkurangnya biaya operasional rumah sakit, meningkatkan kinerja rumah sakit, meningkatkan kemampuan sumber daya manusia di rumah sakit, serta mengembangkan organisasi rumah sakit ke arah yang lebih baik. Namun demikian, implementasi SIMRS tidak terlepas dari hambatan dan kendala. Maka dari itu, manajemen Rumah Sakit supaya mengevaluasi dan mengambil langkah-langkah untuk mengatasi hal hambatan dan kendala tersebut.
Prototipe Pencarian Berkas Kinerja Menggunakan Algoritma Knuth Morris Pratt (Studi Kasus pada Lembaga Amil Zakat) Hanifah Permatasari; Eko Purwanto; Triyono Triyono
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 1 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i1.34500

Abstract

Operational activities at the Amil Zakat Institution (LAZ) produce various files or documents or reports or archives every year. The problem facing institutions is that the number of these reports will continue to increase over time. The management of these files has been carried out digitally using various types of information technology. The focus of information technology is not only being able to store files but also being able to find them again, so this research was conducted to optimize the performance of the search feature on file management information systems. This optimization is carried out by applying the Knuth Morris Pratt (KMP) Algorithm. The research stage is to design an algorithm for the system, build an application based on the design that has been carried out, prepare the data to be tested, and carry out testing. This research has resulted in a prototype LAZ file search. The results of testing this prototype is that the KMP Algorithm has no significant impact on search than the usual SQL Query on PHP. The test results show that the search time for files in all folders only increases by 0.095%, and the search time for files in one folder increases only by 0.007%.
Improving Customer Service Quality through the Utilization of Google Suites in Landing Page Creation Moch. Edy Purwanto; Herliyani Hasanah; Eko Purwanto
Jurnal Ekonomi Vol. 13 No. 02 (2024): Jurnal Ekonomi, Edition April - June 2024
Publisher : SEAN Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research investigates the utilization of Google Suites for enhancing customer service quality through the creation of landing pages. Landing pages play a crucial role in digital marketing by capturing visitors' attention and converting them into customers or leads. Leveraging Google Suites, including tools such as Google Sites, Google Forms, and Google Analytics, offers organizations a comprehensive platform for designing, deploying, and analyzing landing pages to better serve their customers. Through a thorough examination of scholarly articles and relevant publications, this research synthesizes existing literature to explore the benefits and challenges of utilizing Google Suites for landing page creation. It delves into case studies and practical examples to provide insights into how organizations can effectively leverage Google Suites to optimize landing page design, personalize customer experiences, gather valuable feedback through forms, and analyze performance metrics using analytics tools. Moreover, the study examines the impact of improved landing page quality on customer satisfaction, engagement, and retention. By employing quantitative methodologies, this paper offers critical insights into the potential of Google Suites as a valuable resource for enhancing customer service quality in the digital age. It underscores the importance of integrating technology-driven solutions into customer service strategies to meet the evolving needs and expectations of today's consumers. The findings contribute to advancing understanding of the role of technology in customer service excellence and provide practical implications for organizations seeking to leverage Google Suites for effective landing page management.
Analisis Sentimen Model Distilbert Multilingual Cased Dalam Mengklasifikasikan Ulasan Game Genshin Impact Abdullah Sajad; Nurmalitasari Nurmalitasari; Eko Purwanto
Computer Science Research and Its Development Journal Vol. 16 No. 2 (2024): June 2024
Publisher : LPPM Universitas Potensi Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22303/csrid.16.2.2024.124-136

Abstract

The evolution of information technology has revolutionized how humans engage with the world, particularly within the gaming sector. This paper explores the utilization of the DistilBERT Multilingual Cased model for analyzing sentiments expressed in Genshin Impact game reviews. The research methodology encompasses gathering data from Google PlayStore and Apple AppStore, manually labeling data, preprocessing it, and employing the DistilBERT Multilingual Cased model for analysis. The model's performance is assessed using metrics such as accuracy, precision, recall, and f1-score. Findings reveal that the model effectively categorizes sentiment in reviews, achieving an overall accuracy of 82%. Precision, recall, and f1-score metrics consistently surpass 0.77 across all sentiment categories. This study concludes that the DistilBERT Multilingual Cased model shows promise as a valuable tool for multilingual sentiment analysis within the realm of game reviews.
Analisis Perbandingan Metode Yolo Dan Faster R-CNN Dalam Deteksi Objek Manusia Pratama, Muhammad Ilham; Nurchim, Nurchim; Purwanto, Eko
Progresif: Jurnal Ilmiah Komputer Vol 21, No 2: Agustus 2025
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35889/progresif.v21i2.2890

Abstract

Human object detection is an important component in surveillance systems, behavior analysis, and crowd management in public spaces such as stadiums, shopping malls, and terminals. However, the detection process often faces obstacles such as inconsistent lighting, complex backgrounds, and high object density. This study aims to compare the performance of two object detection algorithms, namely YOLOv10 and Faster R-CNN, in detecting humans. The dataset used is uniform and covers a wide range of environmental conditions to ensure fair and objective evaluation. This research involves the stages of data collection, pre-processing, model training, testing, and performance evaluation. The test results show that YOLOv10 has a performance advantage with an mAP50 value of 0.75, higher than that of Faster R-CNN which obtained an AP50 of 0.67. Based on these findings, YOLOv10 is recommended for use in applications that require real-time human detection with a high level of accuracy.Kata kunci: YOLOV10; Faster R-CNN; Object Detection AbstrakDeteksi objek manusia merupakan komponen penting dalam sistem pengawasan, analisis perilaku, dan pengelolaan keramaian di ruang publik seperti stadion, pusat perbelanjaan, dan terminal. Namun, proses deteksi sering menghadapi kendala seperti pencahayaan yang tidak konsisten, latar belakang kompleks, dan kepadatan objek tinggi. Penelitian ini bertujuan buat membandingkan kinerja dua algoritma deteksi objek, yaitu YOLOv10 dan Faster R-CNN, dalam mendeteksi manusia. Dataset yang digunakan bersifat seragam dan mencakup berbagai kondisi lingkungan untuk memastikan evaluasi yang adil dan objektif. Penelitian ini melibatkan tahapan pengumpulan data, pra-pemrosesan, pelatihan model, pengujian, dan evaluasi performa. Hasil pengujian menunjukkan bahwa YOLOv10 memiliki keunggulan performa dengan nilai mAP50 sebesar 0,75, lebih tinggi dibandingkan Faster R-CNN yang memperoleh AP50 sebesar 0,67. Berdasarkan temuan tersebut, YOLOv10 direkomendasikan untuk digunakan dalam aplikasi yang membutuhkan deteksi manusia secara real-time dengan tingkat akurasi tinggi.Kata kunci: YOLOV10; Faster R-CNN; Deteksi Objek