Claim Missing Document
Check
Articles

APPLICATION OF K-NEAREST NEIGHBOUR, RECURSIVE ELIMINATION AND ADASYN ALGORITHMS ON DERMATITIS DISEASE CLASSIFICATION DATA Ramadhani, Daib Jidan; Siswa, Taghfirul Azhima Yoga; Pranoto, Wawan Joko
Journal of Computer Networks, Architecture and High Performance Computing Vol. 7 No. 3 (2025): Articles Research July 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v7i3.6656

Abstract

Dermatitis is a common type of non-infectious skin disease frequently found in Indonesia. Its prevalence is influenced by several factors such as poor hygiene, environmental conditions, and climate change. Data from RSUD Jagakarsa recorded that from 1,066 skin disease cases between February 2023 and January 2024, approximately 62.2% were non-infectious, and 34.4% of those were classified as dermatitis. The diagnostic process for dermatitis is often challenging due to its symptom similarity with other skin conditions, leading to potential misclassification. Therefore, a more accurate and efficient classification approach is required to support medical professionals in identifying dermatitis cases effectively. This study proposes the use of a combination of machine learning methods: K-Nearest Neighbor (KNN) as the core classification algorithm, Recursive Feature Elimination (RFE) for feature selection, and Adaptive Synthetic Sampling (ADASYN) to handle class imbalance within the dataset. The data was sourced from UPTD Puskesmas Bontang Barat in 2024, consisting of 392 samples and 10 main features. Evaluation was conducted using a 10-fold cross-validation scheme. Results showed that the baseline KNN model achieved an average accuracy of 62.23%. With ADASYN applied, the accuracy improved to 63.56%, and further increased to 92.71% when combined with feature selection using RFE.
Optimizing library catalogue management using object-oriented e-catalogue application: A case study at Universitas Muhammadiyah Jambi Yaakub, Saleh; Windiarti, Ika Safitri; Pranoto, Wawan Joko
Journal of Computer-based Instructional Media Vol. 3 No. 2 (2025): Regular Issue
Publisher : Researcher and Lecturer Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58712/jcim.v3i2.145

Abstract

The development of a comprehensive and efficient library catalogue system is essential for improving accessibility to information in modern educational environments. This research addresses the inefficiencies of manual cataloguing methods at Universitas Muhammadiyah Jambi’s library by proposing an Object-Oriented Programming (OOP)-based E- catalogue system. The system, developed using Visual Basic and Microsoft Access, streamlines the book-searching process, enhancing user access to book details such as authors, titles, and synopses. The system’s user-friendly interface supports features like search, administration, and data backup, improving both search efficiency and user satisfaction. This research contributes to the advancement of library management systems, demonstrating the potential of OOP-based design for future applications in similar academic institutions. Future research can build on this work by integrating machine learning techniques for personalized book recommendations and expanding the system's scalability.
Optimasi SVM dengan RFE dan ROS untuk Mengatasi High Dimension dan Imbalanced Data Banjir Pambudi, Faldy Alfareza; Siswa, Taghfirul Azhima Yoga; Pranoto, Wawan Joko
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 3 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i3.41068

Abstract

Floods are natural disasters that often occur in Indonesia, one of which is the city of Samarinda which experienced a significant increase in flood cases in 2018-2021. The use of machine learning, especially the Support Vector Machine (SVM) algorithm, aims to accurately predict future flood events, but the main problem faced is data imbalance and high-dimensional data. This research combines SVM with Random Oversampling (ROS) oversampling techniques and Recursive Feature Elimination (RFE) feature selection to overcome data imbalance and high-dimensional data, with the aim of increasing the classification accuracy of Samarinda City flood data. The cross validation method is with 10-fold cross-validation, and the model performance is evaluated with a confusion matrix to calculate the accuracy value. The data used was obtained from BPDB and BMKG Samarinda City for the 2021-2023 period, consisting of 11 attributes and 1095 lines of data. The research results show that RFE succeeded in identifying the five most important features, namely minimum temperature (Tn), maximum temperature (Tx), average temperature (Tavg), humidity (RH_avg) and maximum wind direction (ddd_x). With the combination of SVM, ROS, and RFE models, flood data classification accuracy increased by 0.78% from 97.14% to 97.92%.
Model Optimasi SVM-GSBE dalam Menangani High Dimensional Data Stunting Kota Samarinda Siti Muawwanah; Taghfirul Azhima Yoga Siswa; Wawan Joko Pranoto
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 3 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i3.41545

Abstract

Stunting has become a widely discussed health issue in Indonesia, par-ticularly in Samarinda City, which recorded a prevalence of 12.7% in 2023, making it the highest in East Kalimantan Province. The use of data mining techniques becomes crucial in overcoming the challenges of high dimensional data, such as computational complexity, the risk of overfitting, and visualization difficulties. This study aims to enhance the accuracy of Support Vector Machine optimization models using Grid Search and Backward Elimination feature selection (SVM-GSBE) to handle high-dimensional data related to stunting in Samarinda City. The dataset used is sourced from Samarinda City Health Office in 2023, covering 26 community health centers with 21 attributes and a total of 150,466 records. The research methodology includes data collection, pre-processing, data partitioning using K-Fold Cross Validation, feature selection using Backward Elimination, and SVM model optimization with Grid Search. Features such as BB/U, ZS TB/U, ZS BB/U, ZS BB/TB, Height, and LiLA have proven to increase accuracy in stunting data classification. Evaluation results show that Grid Search successfully increased accuracy for Linear from 99.59% to 99.78%, Polynomial from 90.92% to 99.40%, RBF from 89.80% to 98.36%, and Sigmoid from 75.29% to 86.84%. This indicates that the SVM-GSBE model can effectively be used as a tool for early detection of stunting and to support health policies in Samarinda City.
Model Optimasi KNN-PSORF dalam Menangani High Dimensional Data Banjir Kota Samarinda Restu, Anggiq Karisma Aji; Siswa, Taghfirul Azhima Yoga; Pranoto, Wawan Joko
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 3 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i3.41587

Abstract

Floods are a natural phenomenon that frequently occurs in Indonesia, including in Samarinda City which has faced flood issues over the past three years, affecting thousands of homes and around 27,000 residents. Predicting flood disasters requires machine learning technology using data mining classification methods. However, classification processes often encounter issues related to high-dimensional data, which can lead to overfitting and class imbalance, thereby biasing dominant classes while neglecting minority classes. This research aims to enhance classification accuracy in Samarinda City's flood data using the K-Nearest Neighbor (KNN) algorithm combined with Relief feature selection and Particle Swarm Optimization (PSO) optimization. The validation method employed is 10-fold cross-validation, with performance evaluation using a confusion matrix. Data sourced from Samarinda City's Disaster Management Agency (BPBD) and Meteorology, Climatology, and Geophysics Agency (BMKG) spans from 2021 to 2023, comprising 19 features and a total of 1095 records. Relief feature selection identified four crucial features: maximum wind direction, wind speed, average wind speed, and maximum wind speed direction. Average evaluations with k values of 3, 5, 7, 11, 13, and 15 demonstrate that Relief feature selection and PSO optimization effectively enhance accuracy in the K-Nearest Neighbor algorithm for flood data, with KNN and PSO yielding improvements of 2-5%. Relief feature selection alone improves accuracy by 1-2%, while combining Relief with PSO provides a 2-5% enhancement. The combined KNN, Relief, PSO model is expected to deliver optimal performance in classifying Samarinda City's flood data.
Model Optimasi Random Forest dengan PSO-CHI-SM dalam Mengatasi High Dimensional dan Imbalanced Data Banjir Kota Samarinda Taufiq, Ilham; Siswa, Taghfirul Azhima Yoga; Pranoto, Wawan Joko
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 3 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i3.41632

Abstract

Flooding is a natural disaster that frequently affects our country. Samarinda City, in particular, continues to experience frequent flooding events with 18 incidents in 2018, 33 incidents in 2020, and 32 incidents in 2021. To predict flood disasters, it is necessary to utilize technology known as machine learning for analyzing and classifying floods. However, classification often encounters issues with high-dimensional data and class imbalance. This study aims to determine the extent to which the accuracy of flood disaster classification improves by using the Random Forest algorithm with PSO for optimization, Chi-Square feature selection, and SMOTE oversampling to balance classes. The data used in this study comprises flood data from 2021-2023 obtained from BMKG and BPBD Samarinda City, with a total of 1095 records and 11 attributes. The validation technique used is 5-fold cross-validation, and the evaluation uses a confusion matrix. The results of the Chi-Square feature selection identified Rainfall, Maximum Wind Direction, Most Frequent Wind Direction, Humidity, Sunshine Duration, and Wind Speed as the most influential features based on Chi-Square scores and P-values. The average accuracy obtained from the proposed classification model using 5-fold cross-validation reached 96.02%.
PENERAPAN K-MEANS CLUSTER DALAM MEMILIH STRATEGI PROMOSI PENERIMAAN MAHASISWA BARU Miliani, Dwi Fitri; Pranoto, Wawan Joko
Jurnal Cahaya Mandalika ISSN 2721-4796 (online) Vol. 3 No. 3 (2022)
Publisher : Institut Penelitian Dan Pengambangan Mandalika Indonesia (IP2MI)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Proses penerimaan Mahasiswa Baru (PMB) dilakukan di berbagaiUniversitas maupun Perguruan tinggi yang ada di Indonesia salah satunya diUniversitas Muhammadiyah Kalimantan Timur (UMKT) tepatnya pada FakultasKesehatan tahun ajaran 2021. Untuk menentukan suatu informasi strategipromosi yang baik digunakan. Metode ini menggunakan algoritma k-meansclustering dengan rumus Silhouette yang diimplementasikan menggunakansoftware Data Mining yaitu Google Collab. Dari 165 responden yang mengisiKuesioner. Cluster 1 memiliki Centroid (1.66, 3.09,3.30,-8.48, 4.54) denganjumlah32 responden mengetahui informasi Kampus Universitas MuhammadiyahKalimantan Timur melalui Informasi Langsung dan Media Online serta didominasiasal sekolah SMK dari Kalimantan, Cluster 2 memiliki Centroid (3.03, 2.80, 1.00,1.00, 4.99) dengan jumlah 51 Responden mengetahui informasi KampusUniversitas Muhammadiyah Kalimantan Timur melalui Media Online dan Cetakserta didominasi asal sekolah SMK dari Kalimantan, Cluster 3 memiliki Centroid(2.25, 2.62, 1.00, 1.00, 1.00) dengan jumlah 31 Responden mengetahui informasiKampus melalui Media Cetak dan Informasi Langsung serta didominasi asalsekolah SMA dari Kalimantan , Cluster 4 memiliki Centroid (2.33, 2.50,1.00, -1.11,5.33) dengan jumlah 51 Responden mengetahui informasi Kampus melalui MediaOnline,Cetak, dan Informasi langsung serta didominasi asal sekolah SMA dariKalimantan.Sehingga dari 4 Cluster yang Terbentuk yang dapat di lihat nilaitertinggi nya adalah pada Cluster 4.
Implementation of the PSO-SMOTE Method on the Naive Bayes Algorithm to Address Class Imbalance in Landslide Disaster Data Damari, Azwar; Taghfirul Azhima Yoga Siswa; Wawan Joko Pranoto
INOVTEK Polbeng - Seri Informatika Vol. 10 No. 1 (2025): March
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/7wcvrb72

Abstract

Landslides in Samarinda, which often occur after floods, pose a threat to settlements, infrastructure, and the agricultural sector. This study proposes a combination of Naïve Bayes, SMOTE (Synthetic Minority Oversampling Technique), and PSO (Particle Swarm Optimization) to address class imbalance in landslide prediction. The results show that while PSO successfully improves the accuracy of the Naïve Bayes model, the application of SMOTE led to a decrease in accuracy for some method combinations. This decrease is due to changes in data distribution caused by synthetic data, which can introduce noise and affect feature selection and model optimisation. However, the combination of Naïve Bayes with PSO optimisation resulted in a modest accuracy improvement (+0.48%). These findings suggest that SMOTE should be used cautiously, while PSO is more effective in enhancing the accuracy of the landslide prediction model. The implications for practical application are that although SMOTE and PSO can improve accuracy, the impact of synthetic data on data distribution must be considered, and further testing is needed to ensure its effectiveness in real-world conditions.
SISTEM INFORMASI COMPANY PROFILE PT. PUTRA BONGAN JAYA MENGGUNAKAN WORDPRESS Gina Maulidina; Wawan Joko Pranoto
Jurnal Gembira: Pengabdian Kepada Masyarakat Vol 1 No 06 (2023): DESEMBER 2023
Publisher : Media Inovasi Pendidikan dan Publikasi

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

PT. Putra Bongan Jaya, perusahaan penanaman modal asing di bidang perkebunan kelapa sawit, PT. Putra Bongan Jaya menghadapi kendala dalam penyebaran informasi perusahaan. Dalam mengatasi masalah ini, di rancangnya sistem informasi company profile berbasis WordPress, dengan pengumpulan data melibatkan studi literatur, observasi, dan wawancara serta menggunakan metode waterfall untuk pengembangan aplikasi secara sistematis dan sekuensial. Dalam rancangan ini menunjukkan bahwa implementasi sistem informasi company profile menggunakan WordPress dapat membantu meningkatkan penyebaran informasi perusahaan dengan akses mudah dan cepat bagi pengguna
SISTEM INFORMASI PELAYANAN ADMINISTRASI KEPENDUDUKAN DESA HANDIL TERUSAN BERBASIS WEB Muthmainnah; Wawan Joko Pranoto
Jurnal Gembira: Pengabdian Kepada Masyarakat Vol 1 No 06 (2023): DESEMBER 2023
Publisher : Media Inovasi Pendidikan dan Publikasi

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pengabdian ini bertujuan mengembangkan sistem administrasi kependudukan berbasis web di Desa Handil Terusan untuk meningkatkan efisiensi dan akurasi dalam pembuatan surat keterangan. Metode Waterfall digunakan untuk pendekatan pengembangan perangkat lunak yang terstruktur. Desa Handil Terusan, dengan populasi sekitar 5.080 jiwa, menghadapi kendala dalam proses manual pembuatan surat keterangan. Oleh karena itu, penerapan teknologi informasi berbasis web menjadi solusi. Sistem yang dikembangkan mencakup fitur pendaftaran warga, login khusus untuk warga, staf, dan kepala desa, serta dashboard untuk masing-masing peran. Pemilihan teknologi melibatkan PHP dan MySQL untuk pengembangan web dengan menggunakan Visual Studio Code dan Windows 10. Hasilnya adalah situs web dengan fungsi-fungsi seperti pengajuan surat, manajemen pengguna, pencetakan surat, dan laporan bulanan dan tahunan. Sistem ini diharapkan dapat memberikan kontribusi positif terhadap efisiensi dan transparansi dalam administrasi kependudukan di Desa Handil Terusan.