The roasting process has a significant impact on the aroma profile and taste of coffee making it an essential stage in the coffee processing. Currently, the classification of coffee bean roasting levels still relies on subjective human visual assessment, which can lead to errors due to fatigue or negligence. To overcome this problem, a classification system was developed using computer vision technology with a deep learning approach. The present study designed a coffee bean roasting level classification system based on image analysis integrated within an Android application. The Convolutional Neural Network (CNN) model with the MobileNet architecture was used to identify and classify coffee beans based on their roasting level. Two CNN models, namely CNN Alpha and CNN Beta were used in this study. The dataset included 1.600 coffee bean images, with 1.200 images used to train the model and 400 images used to test the accuracy. In this experiment, the input image had an optimal size of 70x70 pixels, a learning rate of 0.0001, and 100 epochs for both models. The model training and testing results in the highest accuracy of 98-88% in 6.40-0.0012 minutes.The application test results obtained 93.55% accuracy, 97.06% precision, and 96.67% recall. These results indicate that this model and application function optimally in classifying coffee bean roasting levels accurately. Overall, this study reveals the potential of integrating CNN with the MobileNet architecture into an Android-based application to change the way of roasting level classification, as well as to improve efficiency and accuracy. Keywords: Coffee, Roasting, Convolutional Neural Network, MobileNet, Android.