Claim Missing Document
Check
Articles

Found 36 Documents
Search

Pengenalan Pola Sinyal Electromyography (EMG) pada Gerakan Jari Tangan Kanan MULDAYANI, WAHYU; IMRON, ARIZAL MUJIBTAMALA NANDA; ANAM, KHAIRUL; SUMARDI, SUMARDI; WIDJONARKO, WIDJONARKO; FITRI, ZILVANHISNA EMKA
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 8, No 3: Published September 2020
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v8i3.591

Abstract

ABSTRAKSinyal EMG merupakan salah satu sinyal yang dapat digunakan untuk memberikan perintah pada kursi roda listrik. Sinyal EMG yang digunakan diambil dari sinyal otot fleksor dan ekstensor yang berada di tangan kanan. Sinyal tersebut diambil menggunakan sensor Myo Armband. Klasifikasi sinyal EMG diambil dari pergerakan jari yang mewakili perintah gerak yaitu jari kelingking untuk bergerak maju, jari manis untuk berhenti, jari tengah untuk belok kanan dan jari telunjuk untuk belok kiri. Setiap sinyal EMG diekstraksi fitur untuk menentukan karakteristik sinyal sehingga fitur yang diperoleh adalah Average Absolute Value, Root Mean Square, Simple Integral Square, EMG Simple Variant and Integrated EMG. Kemudian fitur tersebut digunakan sebagai input dari metode klasifikasi Artificial Neural Network Backpropagation. Jumlah data latih yang digunakan adalah 800 data sedangkan data uji yang digunakan adalah 200 data. Tingkat keberhasilan proses klasifikasi ini sebesar 93%.Kata kunci: electromyogram, artificial neural network, klasifikasi sinyal, tangan kanan, Myo Armband. ABSTRACTEMG signal is one of the signals that can be used to give orders to electric wheelchairs. The EMG signal used is taken from the flexor and extensor muscle signals in the right hand. The signal is taken using the Myo Armband sensor. The EMG signal classification is taken from the movement of the finger which represents the command of motion ie the little finger to move forward, ring finger to stop, middle finger to turn right and index finger to turn left. Each EMG signal is extracted features to determine the signal characteristics so that the features obtained are Average Absolute Value, Root Mean Square, Simple Integral Square, EMG Simple Variant and Integrated EMG. Then the feature is used as input from the Backpropagation classification method. The amount of training data used is 800 data while the test data used is 200 data. The success rate of this classification process is 93%.Keywords: electromyogram, artificial neural network, signal classification, right hand, Myo Armband.
Penerapan Fitur Warna dan Tekstur untuk Identifikasi Kerusakan Mutu Biji Kopi Arabika (Coffea Arabica) di Kabupaten Bondowoso Zilvanhisna Emka Fitri; Brilyan Andi Syahbana; Abdul Madjid; Arizal Mujibtamala Nanda Imron
Jurnal Ilmiah Teknologi Informasi Asia Vol 15 No 2 (2021): Volume 15 Nomor 2 (8)
Publisher : LP2M INSTITUT TEKNOLOGI DAN BISNIS ASIA MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32815/jitika.v15i2.593

Abstract

Plantation crops are also a source of foreign exchange Indonesia is coffee. There are only two types of coffee that have economic value for cultivation, namely Arabica coffee and Robusta coffee. Bondowoso is a district in East Java that develops Arabica coffee. The problem is that farmers still use direct observation (manual) on each coffee bean to determine the quality of coffee beans so that this research is expected to be able to assist farmers in sorting the damage to the quality of coffee beans based on color and texture. The features used are color features and GLCM texture features at 0̊ and 45̊ angles. The total number of data is 198. The Backpropagation method is able to classify quality damage to Arabica coffee beans with a training accuracy rate of 100% and a testing accuracy rate of 97.5% at a learning rate variation of 0.5.
Fruit Sorting System for Oranges Based on Size and Color Using Fuzzy Logic Ali Rizal Chaidir; Panji Eka Prasetya; Arizal Mujibtamala Nanda Imron; Immawan Wicaksono; Guido Dias Kalandro; Gramandha Wega Intyanto
Journal of Educational Engineering and Environment Vol. 3 No. 1 (2024): Journal of Educational Engineering and Environment
Publisher : Fakultas Teknik Universitas PGRI Banyuwangi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36526/jeee.v3i1.3815

Abstract

Along with advances in technology, the use of human labor in managing agricultural products is decreasing because it has been replaced by robots. Robots perform better than human workers who have emotions and need time to rest. This can cause errors when sorting fruit due to lack of concentration caused by fatigue. The large harvest of oranges takes a long time to sort them, starting from color, size, weight, and price, before they are marketed. To make it easier for farmers to sort their harvest from orange fruit, this research was created titled "Citrus Fruit Sorting System Based on Size and Color Based on Fuzzy Logic." The sorting system based on color and size that will be made has the advantage that the fruit being sorted is more varied because it is equipped with fuzzy logic. Fuzzy logic allows membership values between 0 and 1, levels of gray as well as black and white, and in linguistic form, uncertain concepts such as "a little," "fairly," and "very." Apart from that, the system is made more human-friendly because the rule base is created by humans. The sorting tool that was made to be controlled using an Arduino UNO board with the help of Arduino IDE software managed to obtain a success rate of 62.5% for the low and medium-quality classes and a success rate of 87.5% for the high-quality class with an overall average success rate of 70.8 %.
Implementation of Decision Support System for Analyzing the Suitability of Plantation Crops Fitri, Zilvanhisna Emka; Irawan, Ahmad Dandi; Madjid, Abdul; Imron, Arizal Mujibtamala Nanda
IJNMT (International Journal of New Media Technology) Vol 12 No 1 (2025): Vol 12 No 1 (2025): IJNMT (International Journal of New Media Technology)
Publisher : Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/ijnmt.v12i1.3575

Abstract

The productivity of plantation crops is a priori dependent on the suitability of the land and the quality of the land used. The objective of determining land suitability is to increase the amount of crop production, thereby preventing crop failure. The process of land evaluation entails the assessment of land performance with the objective of predicting the potential and limiting factors for crop production. This allows for the identification of alternative types of agriculture. The application of the Fuzzy Mamdani method to the land suitability assessment website, based on rainfall parameters, soil pH and planting depth, is able to provide a land class assessment while making recommendations for plantation crops as an alternative type of agriculture.
RANCANG BANGUN PEMBANGKIT LISTRIK TENAGA SURYA SEBAGAI SUPLAI DAYA UNTUK PENYINARAN KEBUN BUAH NAGA Erwinda, Yudha Teja; Arizal Mujibtamala Nanda Imron; Dananjaya Endi Pratama; Bambang Sujanarko; Candra Putri Rizkiyah Ramadhani; Wicaksono, Immawan
Jurnal Arus Elektro Indonesia Vol. 11 No. 1 (2025)
Publisher : Fakultas Teknik, Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/jaei.v11i1.51294

Abstract

Di Banyuwangi, petani buah naga menghadapi masalah produktivitas di luar musim panen karena tanaman tidak berbunga dalam waktu lama. Mereka menggunakan lampu sebagai pengganti sinar matahari, tetapi ini meningkatkan biaya listrik dan tidak semua lahan dapat dijangkau oleh listrik PLN. Solusi yang tepat adalah memanfaatkan energi terbarukan dari matahari dengan sistem Pembangkit Listrik Tenaga Surya (PLTS) off-grid. Data input dari panel surya dan baterai diambil selama 3 hari dari pukul 09.00 hingga 15.00 WIB, dan data output diambil selama beberapa malam dari pukul 21.00 hingga 02.00 WIB. Perancangan dilakukan dengan menggunakan komponen seperti panel surya, SCC, batrai, dan inverter. Sistem ini menunjukkan kinerja yang baik, dengan produksi energi pada hari pertama sebesar 89,35 Wh melebihi konsumsi 83,3 Wh, dan produksi pada hari kedua mencapai 100,82 Wh dengan sisa energi 17,52 Wh. Meskipun pada hari ketiga produksi turun menjadi 67,78 Wh, sisa energi dari hari sebelumnya mencukupi kebutuhan. Selain itu, pemberian lampu secara signifikan mempercepat pembungaan tanaman buah naga, dengan peningkatan bunga yang signifikan dari minggu kedua hingga kelima, sementara tanaman tanpa lampu tidak berbunga.
Optimisation of Erythrocyte Abnormality Classification using Watershed Segmentation Parahita, Syavina Octavia; Fitri, Zilvanhisna Emka; Imron, Arizal Mujibtamala Nanda
Jurnal Algoritme Vol 5 No 3 (2025): Oktober 2025 || Algoritme Jurnal Mahasiswa Teknik Informatika
Publisher : Program Studi Teknik Informatika Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/algoritme.v6i1.9580

Abstract

According to the World Health Organization (WHO), Polycythemia vera (PV) belongs to one of the main categories of Myeloproliferative Neoplasm (MPN). The results of laboratory diagnosis of PV are characterized by an increase in the number of erythrocytes, hemoglobin, leukocytes and platelets. Generally, blood examination uses automatic full blood count (FBC), but this method cannot detect abnormalities in the shape of erythrocytes, so further processing is needed from microscopic examination by creating a system that is able to detect and identify red blood cell abnormalities automatically. The system is a combination of digital image processing methods and intelligent systems methods commonly known as computer vision. The watershed segmentation method is used to separate closely packed cells, while the backpropagation method is an intelligent system capable of classifying erythrocyte shape abnormalities. The amount of data used is 340 training data and 50 test data, while the most optimal learning rate is 0.6 with a maximum epoh of 100 so that the system accuracy is 88%, specificity is 0.056 and sensitivity is 0.714.