Claim Missing Document
Check
Articles

Penggunaan Aplikasi Kenaikan Kelas sebagai Alat Monitoring Proses Belajar Mengajar: The use of the Class Advancement Application as a Tool for Monitoring the Teaching and Learning Process Annisa, Riski; Sabaruddin, Raja; Rahayuningsih, Panny Agustia; Winnaarto, Monikka Nur
Jurnal Abdimas Le Mujtamak Vol. 3 No. 2 (2023): Le MUJTAMAK 2023: Juli - Desember
Publisher : Universitas Islam Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46257/jal.v3i2.818

Abstract

Pengabdian masyarakat ini bertujuan untuk mengintegrasikan aplikasi kenaikan kelas sebagai alat untuk memantau proses belajar mengajar, dengan fokus pada penggunaan teknologi informasi untuk meningkatkan kualitas pendidikan. Ini dilakukan untuk menunjukkan komitmen untuk meningkatkan pendidikan. Permasalahan yang diupayakan untuk diberikan solusinya adalah mengenai implementasi aplikasi untuk dapat membantu pencapaian akademik dan keterlibatan siswa dalam belajar. Tujuan utamanya adalah meningkatkan kinerja guru melalui adaptasi terbaik terhadap kebutuhan siswa dengan visualisasi data yang efektif. Metode yang digunakan dalam kegiatan ini termasuk pengumpulan dan analisis data dalam waktu nyata. Hasil penelitian menunjukkan keberhasilan aplikasi memberikan pengaruh positif pencapaian akademik dan keterlibatan siswa. Selain itu, aplikasi meningkatkan kinerja guru dengan menyesuaikannya dengan kebutuhan unik siswa. Strategi penanganan terbukti berhasil, menunjukkan bahwa aplikasi dapat digunakan dan fleksibel meskipun menghadapi masalah selama implementasi. Diidentifikasi bahwa hal-hal penting untuk pengembangan lebih lanjut adalah meningkatkan keterlibatan orang tua, menciptakan sifat inovatif, dan memberikan pelatihan lanjutan bagi pendidik. Hasil penelitian menekankan bahwa aplikasi kenaikan kelas adalah alat yang efektif untuk meningkatkan kualitas pendidikan dan membuat lingkungan pembelajaran yang dinamis, responsif, dan sesuai dengan zaman.
Rancang Bangun Expert System Diagnosa Penyakit Mata Manusia Menggunakan Metode Certainty Factor Anna, Anna; Annisa, Riski; Rahayuningsih, Panny Agustia; Nurdiani, Siti
Infotek: Jurnal Informatika dan Teknologi Vol. 7 No. 1 (2024): Infotek : Jurnal Informatika dan Teknologi
Publisher : Fakultas Teknik Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/jit.v7i1.24119

Abstract

When the eyes experience interference, the sufferer will be very uncomfortable in doing their daily activities. In an expert system, the Certainty Factor methods are used to determine the percentage of possible eye diseases suffered and provide accurate diagnostic information based on research conducted. The expert system developed to diagnose eye disease has been successfully implemented using knowledge which includes 22 symptoms and 6 types of related diseases. The purpose of this study is to explore the symptoms displayed in the form of questions in order to diagnose the type of disease with web management system-based software. So that later it gives the results of the percentage of diagnosis of eye disease after based on the symptoms suffered. Of course this research can help experts in dealing with existing problems and make it easier for the general public to get information about eye diseases directly consult through the system without having to check with an eye doctor first, can also provide relief for the underprivileged people who want to consult directly with experts only through Web application.
Aplikasi Praktis Metode Pengembangan Cepat (RAD) Dalam Sistem Manajemen Penjualan Dan Pengembalian Barang Berbasis Web Annisa, Riski; Meilinda, Eva; Yustisio, Sendi
Jurnal Informatika Kaputama (JIK) Vol 8 No 1 (2024): Volume 8, Nomor 1, Januari 2024
Publisher : STMIK KAPUTAMA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59697/jik.v8i1.418

Abstract

In the process of recording sales transactions at Toko Kurnia Jaya always use a manual typewriter so that it is not effective and inaccurate in recording sales transactions, and sales notes are still manual on paper. Another problem is in the process of returning goods, if the goods purchased by the buyer are not appropriate. From these problems, it is formulated how to build a web-based application for recording sales transactions and returning goods. The data collection method that the author uses in completing this report is the method of observation, interviews and library studies. The system development model that the author uses is the RAD model, the programming language that the author uses is PHP and MySql as a database and tested using the Blackbox testing method. With the application of processing sales transactions and returning goods, it can facilitate the search for goods data and more quickly find information about the price of goods and make it easier to manage transaction data, both knowing the total sales results, returning goods and recording incoming goods data.
PENERAPAN METODE WATERFALL DALAM MERANCANG APLIKASI MOBILE GURU DAN ORANG TUA Annisa, Riski; Baihaqi, Muhammad Rivaldi
JTIK (Jurnal Teknik Informatika Kaputama) Vol. 5 No. 2 (2021): Volume 5, Nomor 2, Juli 2021
Publisher : STMIK KAPUTAMA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59697/jtik.v5i2.543

Abstract

In the current development of educational technology, the world of education cannot be separated from the role of the internet. Mobile devices have become part of human daily life in facilitating activities, currently, the need for mobile-based information technology is very necessary, therefore schools need an information system that can support and provide services between teachers (schools) and parents of students. . This study discusses the application of the waterfall in designing mobile-based teacher and parent applications. Currently, most of the information systems in schools are still done manually, starting from news announcements, school grades, and tuition payments, making it possible for errors to occur during the delivery process. The design of this application is the best solution to solve problems that exist in schools, and with a computerized system, an effective and efficient activity can be achieved in supporting activities at this school.
ANALISIS KOMPARASI ALGORITMA KLASIFIKASI DATA MINING UNTUK PREDIKSI PENDERITA PENYAKIT JANTUNG Annisa, Riski
JTIK (Jurnal Teknik Informatika Kaputama) Vol. 3 No. 1 (2019): Volume 3, Nomor 1, Januari 2019
Publisher : STMIK KAPUTAMA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59697/jtik.v3i1.650

Abstract

Penyakit jantung adalah istilah umum untuk semua jenis gangguan yang mempengaruhi jantung. Penyakit jantung berarti sama dengan penyakit jantung tetapi tidak penyakit kardiovaskular. Penelitian ini akan melakukan perbandingan beberapa algoritma klasifikasi yaitu Decision Tree, Naïve Bayes, k-Nearest Neighbour, Random Forest, dan Decison Stump dengan menggunakan uji parametrik dengan t-test agar dapat menghasilkan perbandingan metode yang lebih baik untuk data set laki-laki penderita Penyakit jantung. Hasil penelitian mendapatkan nilai akurasi sebesar tertinggi sebesar 80.38%. Hasil penelitian menunjukkan bahwa algoritma random forest dan decision stump melakukan performa terbaik dalam pengklasifikasi di dataset, C4.5 dan Naïve bayes juga tampil baik, kemudian k-NN merupakan algoritma yang kurang baik diimplementasikan dalam dataset.
SOSIALISASI PEMANFAATAN ARTIFICIAL INTELLIGENCE UNTUK MEDIA PROMOSI PADA LEGEND AUTO PART PONTIANAK: SOSIALISASI PEMANFAATAN ARTIFICIAL INTELLIGENCE UNTUK MEDIA PROMOSI PADA LEGEND AUTO PART PONTIANAK Annisa, Riski; Anna, Anna; Winnarto, Monikka Nur; Rahayuningsih, Panny Agustia
Indonesian Community Service Journal of Computer Science Vol. 2 No. 1 (2025): Periode Januari 2025
Publisher : Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/indocoms.v2i1.7779

Abstract

Perkembangan teknologi Artificial Intelligence (AI) membuka peluang baru bagi strategi pemasaran digital, terutama bagi usaha kecil dan menengah. Pengabdian masyarakat ini bertujuan mensosialisasikan pemanfaatan AI untuk media promosi pada Legend Auto Part Pontianak. Metode pelaksanaan meliputi analisis kebutuhan, pelatihan penggunaan AI, implementasi teknologi, serta monitoring dan evaluasi. Kegiatan difokuskan pada penggunaan chatbot di platform media sosial, iklan digital berbasis AI, dan analisis sentimen pelanggan. Hasil menunjukkan peningkatan signifikan dalam strategi pemasaran, termasuk layanan pelanggan otomatis, target iklan yang lebih presisi, dan pemahaman mendalam tentang perilaku konsumen. Implementasi AI memungkinkan Legend Auto Part Pontianak mengoptimalkan anggaran pemasaran, meningkatkan visibilitas produk, dan memberikan pengalaman pelanggan yang lebih baik, sehingga meningkatkan daya saing bisnis di era digital.
Perbandingan Kinerja Naïve Bayes, Support Vector Machine, dan K-Nearest Neighbor dalam Analisis Sentimen Mobile Legends Zikirlah, Hikmawan Alvin; Iltavera Paula; Muhammad Fazilla; Riski Annisa; Lady Agustin Fitriana
TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akuntansi Vol 5 No 2 (2025): TAMIKA: Jurnal Tugas Akhir Manajemen Informatika & Komputerisasi Akuntansi
Publisher : Universitas Methodist Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The rapid advancement of information and communication technology has significantly increased the popularity of online games in Indonesia, one of which is Mobile Legends: Bang Bang (MLBB), with millions of active users. The abundance of user reviews on digital platforms provides valuable data for analysis using text mining and natural language processing (NLP) approaches. Sentiment analysis is applied to classify user opinions into positive, negative, and neutral categories, offering insights into player satisfaction and perceptions of game quality. This study compares the performance of three classification algorithms, Naïve Bayes (NB), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN), in analyzing sentiment from Mobile Legends user reviews on the Google Play Store. A total of 5,000 reviews were collected using the web scraping technique and processed through the Knowledge Discovery in Databases (KDD) framework, which includes cleaning, case folding, tokenization, normalization, and stopword removal. Sentiment labeling was performed using a lexicon-based approach with the InSet sentiment lexicon. The dataset was divided into training and testing sets with an 80:20 ratio and evaluated using accuracy, precision, recall, and F1-score metrics. The results indicate that the SVM algorithm achieved the highest accuracy of 88.1%, followed by KNN at 65.1% and NB at 62.6%. Thus, SVM is recommended as the most effective model for sentiment analysis of Mobile Legends user reviews.