Claim Missing Document
Check
Articles

Found 19 Documents
Search

EDDY CURRENT SENSOR BERBASIS FLAT COIL FR4 UNTUK MENENTUKAN KETEBALAN PELAT LOGAM NON MAGNETIK AL Tengku Emrinaldi; Salomo Salomo; Yanuar Hamzah; Iwantono Iwantono; Lazuardi Umar
Spektra: Jurnal Fisika dan Aplikasinya Vol 2 No 3 (2017): SPEKTRA: Jurnal Fisika dan Aplikasinya, Volume 2 Nomor 3, Desember 2017
Publisher : Program Studi Fisika Universitas Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (391.066 KB) | DOI: 10.21009/SPEKTRA.023.07

Abstract

Abstrak Sensor arus eddy (eddy current) digunakan untuk pengukuran ketebalan logam khususnya logam non magnetik seperti alumunium. Penelitian ini telah mengembangkan sensor eddy current berbahan PCB (printed circuit board) jenis FR4 yang memiliki ketebalan lapisan tembaga 35micron. Prototipe yang dihasilkan mempergunakan koil sensor dengan jumlah gulungan (n) 30 lilitan, diameter (Æ) 30mm, lebar dan jarak antar koil, (dkoil) 0,254mm dan tahanan (Rkoil) sebesar 4,26Ω. Respon sensor ketebalan pelat logam terhadap bahan uji dievaluasi dengan memberikan eksitasi frekuensi tunggal 700Khz, 1MHz dan 1.33MHz. Rangkaian ketebalan pelat telah mempergunakan rangkaian pengunci fasa (phase locked loop) dan mampu mengukur variasi ketebalan mulai 0,2 mm sampai 2 mm, sementara jarak antara sensor dengan logam uji dijaga konstan 2 mm. Hasil pengukuran memberikan respon kurva U(t) dalam hubungan Kata-kata kunci:sensor eddy current, PCB FR4, material non magnetik, ketebalan logam, rangkaian phase locked loop Abstract Eddy current sensor is used to measure the thickness of metals, especially non-magnetic metals such as aluminum. This research has developed eddy current sensor made from PCB (printed circuit board) type FR4 which has 35micron copper layer thickness. The developed prototype uses a designed coil sensor with the number of winding (n) 30 turn, diameter () 30mm, width and distance between coils, (dkoil) 0.254 mm and coil resistance (Rkoil) of 4.26 Ω. The sensor response to the test material was evaluated by giving a single frequency excitation of 700 Khz, 1 MHz and 1.33 MHz. The plate thickness electronics has used a phase locked loop circuit and is capable to measure the thickness variations from 0.2 mm up to 2 mm, while the distance between the sensor coil and the test object was kept constant at 2 mm. The measurement results give the U (t) curve response in the exponential relationship. Keywords: eddy current sensor, PCB FR4, nonmagnetic material, thickness, phase locked loop circuit
Novel approach peak tracking method for FBG: Gaussian polynomial technique Meyzia, Bunga; Emrinaldi, Tengku; Wanara, Nadiah; Hanto, Dwi; Widyatmoko, Bambang; Rianaris, Agitta; Syahadi, Mohamad; Hairi, Haryana Mohd
Science, Technology and Communication Journal Vol. 4 No. 3 (2024): SINTECHCOM Journal (June 2024)
Publisher : Lembaga Studi Pendidikan and Rekayasa Alam Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59190/stc.v4i3.262

Abstract

This paper presents a novel approach for tracking the peaks in the FBG spectrum using the Gaussian polynomial method. The proposed algorithm involves preprocessing the FBG signal, detecting the peaks, and fitting the peaks with a Gaussian function. The performance of the algorithm is evaluated using both simulated and experimental FBG spectra. This method involves fitting a Gaussian function to the peak of interest and using the fitted parameters to estimate peak height, width, and location. The method is highly accurate and precise and can provide detailed information about peak shape and position, making it effective for tracking complex or overlapping peaks. However, the method can be computationally intensive and may require careful selection of initial parameters to ensure accurate results. Despite these limitations, the Gaussian polynomial method is a powerful tool for peak tracking and analysis in various application.
Analysis and modelling of the characteristics of telecommunication antennas utilising metamaterials with a circular structure Defrianto, Defrianto; Saktioto, Saktioto; Anita, Sofia; Zahroh, Siti; Soerbakti, Yan; Emrinaldi, Tengku
Indonesian Physics Communication Vol 21, No 3 (2024)
Publisher : Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/jkfi.21.3.233-238

Abstract

The development of telecommunication antenna technology is increasingly being considered with the need for high and practical antenna performance. The antenna technology can be realized by using the split ring resonator (SRR) metamaterial structure. SRR metamaterial is a periodic material that has minimal manufacturing dimensions and is able to work at high frequencies. The ability of this metamaterial has the potential to be implemented in microstrip antenna structures as telecommunication applications. This study aims to design, simulate and analyze the characteristics of SRR-Circle metamaterials against the frequency function and application performance as a telecommunication antenna. The process is carried out using the Computer Simulation Technology (CST) Studio Suite Software which is operated at a working frequency of 0.009 – 9 GHz. The metamaterial structure is combined from 1 – 4 SRRs in the shape of a Circle with a fixed radius of 3.5 mm. The results of this study indicate the characteristics of metamaterials with negative values in relative permittivity (ɛᵣ), relative permeability (μᵣ) and refractive index (n) with the highest values in the metamaterial structure of the combination of 4 SRR-Circles, each with values of -144.33 Farad/m, -9.29 H/m and -9.07. In its application as a telecommunications antenna, metamaterials have succeeded in improving antenna performance. The highest antenna performance was obtained in the combination structure of 4 SRR-Circles with a return loss value of -34.37 dB, and a bandwidth of 1.00 GHz at a VSWR of 6.77 – 7.77 GHz. The results of this antenna performance have the potential to be applied to telecommunications antenna technology such as satellites, radars and 5G networks.
Detection of Malathion in Ipomoea aquatica Using a Plasmonic Sensor Based on Ag-Modified Gold Nanobipyramids Iwantono, Iwantono; Morsin, Marlia; Yudani, Ananda Febri; Syajali, Hidayati; Ziliwu, Friska; Simbolon, Norsinta Ida; Nafisah, Suratun; Isda, Mayta Novaliza; Emrinaldi, Tengku
Journal of Applied Agricultural Science and Technology Vol. 9 No. 1 (2025): Journal of Applied Agricultural Science and Technology
Publisher : Green Engineering Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55043/jaast.v9i1.369

Abstract

Malathion is an organophosphate pesticide commonly used in agriculture to protect various crops, including Ipomea aquatica. I. aquatica is a widely consumed vegetable that is vulnerable to pests, such as caterpillars, which damage its leaves. Malathion is an insecticide effective against caterpillars on Ipomoea aquatica without affecting its internal tissues. However, excessive use of this pesticide may leave residues that pose risks to the environment and human health. This study aims to develop a plasmonic sensor based on silver-modified gold nanobipyramids (Ag-GNBPs) for malathion detection. This plasmonic sensor employs anisotropic gold nanomaterials, specifically silver-coated gold nanobipyramids, to enhance localized surface plasmon resonance (LSPR) and improve detection sensitivity. Silver is used due to its high electrical conductivity and responsiveness to electrical and light stimuli. Ag-GNBPs were synthesized using the seed-mediated growth method, and their optical, structural, and morphological properties were characterized via UV-Vis spectroscopy, XRD, and FESEM. The UV-Vis absorption spectrum exhibited transverse (T-SPR) and longitudinal (L-SPR) surface plasmon resonance peaks at 500-600 nm and 700-900 nm, respectively. Testing involved adding the analyte to the solution and analyzing LSPR spectrum changes via UV-Vis spectroscopy. The observed LSPR peak shifts correlated with malathion concentration, with enhanced sensitivity due to silver modification. The results demonstrated that the plasmonic sensor based on silver-modified gold nanobipyramids not only detected malathion with high accuracy but also exhibited high sensitivity at low concentrations, which is essential for environmental monitoring and food safety applications. The optimal growth time for the seed-mediated growth method was 2 hours.
Green-synthesized ZnO and Ag nanoparticles: A comparative study of optical, morphology and structural properties for photocatalytic applications Hamzah, Yanuar; Emrinaldi, Tengku; Dewi, Rahmi; Rini, Ari Sulistyo; Umar, Lazuardi; Simatupang, Mediniah Putri; Rabiah, Rabiah; Noferdi, Muhammad Deri
Science, Technology, and Communication Journal Vol. 5 No. 3 (2025): SINTECHCOM Journal (June 2025)
Publisher : Lembaga Studi Pendidikan dan Rekayasa Alam Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59190/stc.v5i3.307

Abstract

In this study, zinc oxide (ZnO) and silver (Ag) nanoparticles were synthesized using Annona muricata leaf extract as a reducing and stabilizing agent with variations in the molar ratio of 1:3, 1:5, and 1:7. Optical characterization using UV-Visible spectroscopy revealed that the variations of molar ratio influence the absorption peak and band gap energy of the resulting ZnO and Ag. UV-Vis results show that the molar ratio 1:5 was optimal for synthesizing ZnO and Ag. The band gap value of synthesized ZnO and Ag at a 1:5 molar ratio was 3.27 eV and 2.01 eV, with absorption peaks at 355 nm and 435 nm respectively. XRD characterization shows that ZnO nanoparticles has a hexagonal wurtzite structure with lattice parameters of a = 76 Å and c = 4. 95 Å and for Ag nanoparticles has a face centered cubic structure with lattice parameters a = b = c is 4.15 Å. Annona muricata leaves extract shows photocatalytic properties that can be applied to the degradation of polluted water. This shows that ZnO nanoparticles via green synthesis using Annona muricata leaf extract is a very simple, low-cost and environmentally friendly method.
A medical physics review of the use of contrasodium in hysterosalpingography (HSG) examinations Akbar, Aidil; Habib, Alltop Amri Ya; Simanjuntak, Asnika Putri; Emrinaldi, Tengku
Indonesian Physics Communication Vol 22, No 2 (2025)
Publisher : Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/jkfi.22.2.85-96

Abstract

Hysterosalpingography (HSG) is a widely used radiological procedure for evaluating female infertility, particularly in assessing fallopian tube patency and uterine anatomy. A critical component of HSG is the use of contrast media. Water-based contrast agents, such as contrasodium, are often preferred due to their favorable safety profile. The field of medical physics plays a vital role in ensuring diagnostic image quality while minimizing biological risks from radiation exposure. This article reviews the effectiveness of contrasodium in HSG procedures from a medical physics perspective, comparing it to other contrast agents and examining radiation dose management in women of reproductive age. The study is a literature review of scientific publications from the past decade (2015–2024), including clinical trials, meta-analyses, and international guidelines from the WHO and ICRP. The analysis focuses on imaging physics parameters, contrast efficiency, biological safety, and radiation dose evaluation. Findings indicate that contrasodium provides sufficient radiological imaging with minimal biological risk. Although oil-based contrast agents are associated with higher post-HSG pregnancy rates, they pose greater risks of adverse biological effects. Medical physicists are instrumental in optimizing imaging protocols, managing radiation doses, and selecting exposure parameters in accordance with the ALARA (As Low As Reasonably Achievable) principle. In conclusion, the use of contrasodium in HSG offers an optimal balance between diagnostic efficacy and patient safety. The standardization of evidence-based HSG protocols at the national level is recommended to enhance clinical practice in Indonesia.
Reflectivity of Bragg grating fiber on human respiration using InGaAs photodiode converter system Oktavia, Dian Putri; Saktioto, Saktioto; Hanto, Dwi; Syamsudhuha, Syamsudhuha; Amelia, Rina; Emrinaldi, Tengku
Indonesian Physics Communication Vol 22, No 2 (2025)
Publisher : Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/jkfi.22.2.175-178

Abstract

Respiration is a vital process characterized by exchanging oxygen and carbon dioxide. Indicators such as respiratory rate are essential for detecting pathological conditions, such as pneumonia and heart failure. This research aims to develop a respiratory sensor system based on fiber Bragg grating (FBG) as an innovative alternative in high electromagnetic field environments. The system utilizes FBG optical fibers to detect strain changes due to respiratory activity, providing a sensitive, safe, and highly electromagnetic environment-compatible solution. The study used FBG with variations in reflectivity of 30%, 50%, 70%, and 90%. FBGs are installed inside oxygen masks at five different points to monitor wavelength changes during respiratory activity. The measurement method involves an optical system with an interrogator and an electrical method using an InGaAs photodiode converter to convert an optical signal into an electrical signal visualized in LabVIEW. Respondents were tested in three activities: stillness, walking, and running. Variations in sensor reflectivity and position in masks were evaluated to determine sensitivity to respiratory changes. The data is collected as a graph of wavelength against time. The result showed that the change in the wavelength of the FBG correlated with the intensity of respiratory activity. The reflectivity of 90% results in the highest sensitivity, allowing for more accurate detection of strain changes. The position of the sensor at the center point of the mask demonstrates the most linear results, indicating optimal sensitivity. Physical activity, such as running, produces the greatest strain on the optical fiber. This study proves the potential of FBG as a precision medical sensor for respiratory monitoring applications.
The effect of reaction time and oil-to-methanol ratio on the calorific value of biodiesel produced from chicken fat oil Habib, Alltop Amri Ya; Emrinaldi, Tengku; Yolanda, Yogi; Azis, Yelmida
Indonesian Physics Communication Vol 22, No 1 (2025)
Publisher : Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/jkfi.22.1.11-14

Abstract

The energy content of a fuel is represented by its calorific value. When biodiesel combusts in the presence of air or oxygen, the heat released during the combustion process is expressed as the calorific value. This study aims to analyze the effect of reaction time (60, 120, and 180 minutes) and the volume ratio of chicken fat oil-to-methanol (OM) (25:30 and 25:50) in the transesterification process on the calorific value of the produced biodiesel. The transesterification process was conducted using MgO as a catalyst under various reaction times and OM ratios. The produced biodiesel was then analyzed to determine its calorific value as a key fuel quality parameter. The results indicate that a longer reaction time and a higher OM volume ratio lead to an increase in the calorific value. The highest calorific value obtained in this study was 9952 kcal/kg, achieved at a reaction time of 180 minutes and an OM volume ratio of 25:50.
Utilization of IoT and biomass energy for innovation in cracker production Muhammad, Juandi; Emrinaldi, Tengku; Ekwarso, Hendro; Arifudin, Arifudin; Risanto, Joko; Yusri, Yusri; Budijono, Budijono; Kemal, Kemal; Rany, Novita; Syah, Erzan
Science, Technology, and Communication Journal Vol. 6 No. 1 (2025): SINTECHCOM Journal (October 2025)
Publisher : Lembaga Studi Pendidikan dan Rekayasa Alam Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59190/stc.v6i1.334

Abstract

This study explores an innovation based on IoT and biomass energy for the efficient production of processed food, specifically crackers. Biomass energy, derived from plant materials, is utilized to generate heat in the processing room. This innovation significantly reduces the processing time for crackers to just 2 hours, compared to the conventional method that requires 2 days of sun-drying. The biomass energy source used in this study includes rambutan tree trunks, which not only provide efficient heat but also impart a pleasant aroma to the final product. The research employs a direct experimental method to design and implement this technology in industrial settings. The primary ingredient for the crackers is cassava, mixed with fish, shrimp, and jengkol. The heat energy generated from the combustion of rambutan tree trunks is effectively utilized in the combustion chamber. Observations indicate that the crackers produced are of high quality, with appealing color and fragrance, making them suitable for market distribution. This innovation demonstrates the potential of combining IoT and biomass energy to enhance food processing efficiency and product quality.