Claim Missing Document
Check
Articles

Impact of Matrix Factorization and Regularization Hyperparameter on a Recommender System for Movies Gess Fathan; Teguh Bharata Adji; Ridi Ferdiana
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 5: EECSI 2018
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (336.245 KB) | DOI: 10.11591/eecsi.v5.1685

Abstract

Recommendation system is developed to match consumers with product to meet their variety of special needs and tastes in order to enhance user satisfaction and loyalty. The popularity of personalized recommendation system has been increased in recent years and applied in several areas include movies, songs, books, news, friend recommendations on social media, travel products, and other products in general. Collaborative Filtering methods are widely used in recommendation systems. The collaborative filtering method is divided into neighborhood-based and model-based. In this study, we are implementing matrix factorization which is part of model-based that learns latent factor for each user and item and uses them to make rating predictions. The method will be trained using stochastic gradient descent with additional tricks and optimization of regularization hyperparameter. In the end, neighborhood-based collaborative filtering and matrix factorization with different values of regularization hyperparameter will be compared. Our result shows that matrix factorization method with lowest regularization hyperparameter outperformed the other methods in term of RMSE score. In this study, the used functions are available from Graphlab and using Movielens 100k data set for building the recommendation systems.
Pengaruh Penggunaan Jenis Storage pada HTTP akselerator Terhadap Kecepatan Akses Web Multisite di Virtual Machine Mandahadi Kusuma; Widyawan Widyawan; Ridi Ferdiana
Prosiding 2nd Seminar Nasional IPTEK Terapan (SENIT) 2017 Vol 2, No 1 (2017): Mei 2017
Publisher : Politeknik Harapan Bersama Tegal

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

web multisite yang paling populer digunakan adalah wordpress. Penggunaan web multisite dengan jumlah pengguna yang banyak menjadikan web tidak dapat bekerja maksimal. Dengan bantuan http akselerator dan pemilihan tipe penyimpanan cache yang tepat diharapkan web dapat melayani kunjungan dalam jumlah ribuan pada satu waktu. Pada eksperiment yang telah dilakukan, menggunakan aplikasi benchmark jmeter, diantara 3 penyimpanan cache (memory, SAN, dan ISCSI), cache hit yang paling stabil didapat ketika ketika menggunakan penyimpanan HDD SAN sedangkan responsetime yang paling optimum didapat ketika http akselerator menggunakan cache penyimpanan berbasis hardisk SAN berbasis fibre channel.
ANALISIS FAKTOR KEBERHASILAN STARTUP DIGITAL DI YOGYAKARTA Mardi Arya Jaya; Ridi Ferdiana; Silmi Fauziati
Prosiding SNATIF 2017: Prosiding Seminar Nasional Teknologi dan informatika (BUKU 1)
Publisher : Prosiding SNATIF

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakDi era serba digital saat ini banyak startup mulai bermunculan, tetapi dari sebagian banyak perusahaan atau organisasi yang mengembangkan startup di indonesia hanya sedikit yang mampu bertahan dan berhasil menghasilkan profit. Mengapa sebuah startup dapat benar-benar sukses membangun bisnisnya sementara startup-startup yang lain gagal dan menyerah? Beberapa alasan gagalnya sebuah startup antara lain, tidak adanya konsumen yang tepat, tidak dapat menemukan model bisnis yang cocok, tingkat persaingan yang tinggi, kebutuhan dana yang besar, tim yang kurang solid, ide dari bisnis itu sendiri, dan juga waktu yang kurang tepat, dan masih banyak yang lainnya. Oleh karena itu diperlukan suatu analisis untuk mengetahui faktor-faktor apa saja yang mempengaruhi sebuah startup dapat bertahan dan berkembang khususnya di Indonesia. Penelitian ini berfokus pada SDM dari perusahaan startup. Hasil dari penelitian ini diharapkan dapat mengetahui faktor apa yang menjadi kesuksesan startup. Kata kunci: Startup, survival, Bisnis model
PERANCANGAN FITUR E-COMMERCE BERDASARKAN KONSEP CUSTOMER RELATIONSHIP MANAGEMENT UNTUK MENINGKATKAN KUALITAS PELAYANAN Evans Fuad; Ridi Ferdiana; - Selo
Prosiding SNATIF 2014: Prosiding Seminar Nasional Teknologi dan Informatika
Publisher : Prosiding SNATIF

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Penjualan suatu produk tidak hanya dilakukan secara langsung tetapi bisa melalui perantara dunia maya (e-commerce), akan tetapi pelanggan dalam e-commerce tidak hanya dapat melakukan interaksi secara aktif tetapi bisa pula secara pasif. Interaksi secara pasif tersebut dikarenakan kurangnya feedback dari sistem ke pelanggan dengan tidak diupdatenya pelayanan secara berkal. E-commerce mainanbocah.com merupakan toko online yang melakukan interaksi yang pasif. Toko online tersebut akan dijadikan objek penelitian dalam paper ini. Objek penelitian tersebut akan dianalisis menggunakan metode analisis SWOT yang dilengkapi dengan konsep konsep Customer Relationship Management (CRM) yang berupa acquire, retain, dan expansion. Metode analisis SWOT digunakan untuk menganalisis keterkaitan peluang dan ancaman pada lingkungan eksternal, serta keterkaitan peluang dan ancaman terhadap kekuatan dan kelemahan internal perusahaan khususnya e-commerce. Hasil yang diharapkan dalam penelitian ini adalah rancangan fitur e-commerce (mainanbocah.com) dengan menerapkan konsep CRM untuk meningkatkan kualitas pelayanan. Kata kunci: Analisis SWOT, Customer Relationship Management, E-commerce, Kualitas Pelayanan
ANALISIS FAKTOR KEBERHASILAN SDM STARTUP YANG ADA DI YOGYAKARTA Mardi Arya Jaya; Ridi Ferdiana; Silmi Fauziati
Prosiding SNATIF 2017: Prosiding Seminar Nasional Teknologi dan informatika (BUKU 1)
Publisher : Prosiding SNATIF

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Kemajuan teknologi yang semakin pesat menyebabkan banyak startup baru muncul, banyak yang berhasil tetapi tidak sedikit yang gagal dan harus gulung tikar, berdasarkan survey dari majalah forbes 90% startup didunia gagal mengembangkan startupnya, banyak faktor yang mempengaruhi kesuksesan startup salah satunya adalah SDM, tetapi masih sedikit pelaku startup yang peduli tentang faktor SDM, oleh karena itu penelitian ini dilakukan untuk mengetahui faktor apa saja yang mempengaruhi kesuksesan SDM startup dengan cara melakukan observasi langsung dan wawancara kepada beberapa startup yang telah berhasil mengembangkan startupnya. Hasilnya diusulkan model kesuksesan startup berdasarkan studi kasus yang dilakukan kepada empat satrtup yang ada di Yogyakarta. Kata kunci: Factor SDM Startup,SDM Succses, SDM Startup
Pengembangan E-learning berbasis Technology Acceptance Model Daniel Kasse; Ir. P. Insap Santosa, M. Sc., Ph. D.; Dr. Ridi Ferdiana, S.T., M.T.
Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI Vol. 3 No. 3 (2014)
Publisher : Prodi Pendidikan Teknik Informatika Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/janapati.v3i3.9809

Abstract

Banyak murid yang mengeluh karna merasa tidak cocok dengan  gaya  mengajar dari guru. Terjadi penolakan  dalam  diri  mereka sehingga menjadi malas, bosan dan stress. Selama ini masih digunakan video tutorial dan power point untuk belajar. Tetapi masih kurang interaktif. Kekurangan dari penggunaan video dan slide presentasi bisa dilengkapi dengan penggunaan website untuk pembelajaran. Website yang dinamis dan kemudahan pencarian informasi sangat diperlukan untuk mendukung kegiatan belajar. Tujuan utama dari penelitian ini adalah membuat sebuah website yang memberikan layanan belajar dengan penyajian materi sesuai kebutuhan siswa.
Aspect Category Classification dengan Pendekatan Machine Learning Menggunakan Dataset Bahasa Indonesia SYAIFULLOH AMIEN PANDEGA PERDANA; Teguh Bharata Aji; Ridi Ferdiana
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 10 No 3: Agustus 2021
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1241.472 KB) | DOI: 10.22146/jnteti.v10i3.1819

Abstract

Customer reviews are opinions on the quality of goods or services that consumers perceive. Customer reviews contain useful information for both consumers and providers of goods or services. The availability of a large number of customer reviews on the websiterequires a framework for extracting sentiment automatically. A customer review often contains many aspects, so the Aspect Based Sentiment Analysis (ABSA) should be used to determine the polarity of each aspect. One of the important tasks in ABSA is Aspect Category Detection. The application of Machine Learning Methods for Aspect Category Detection has been mostly done in the English language domain, but in the Indonesian language domain,there are still a few. This study compares the performance of three machine learning algorithms, namely Naïve Bayes (NB), Support Vector Machine (SVM),and Random Forest (RF),on Indonesian language customer reviews using Term Frequency-Inverse Document Frequency (TF-IDF) as term weighting. The results showthat RFperformsthe best,compared to NB and SVM,in three different domains, namely restaurants, hotels,and e-commerce,with the f1-scoresfor each domainare84.3%, 85.7%, and 89.3%.
Dataset Indonesia untuk Analisis Sentimen Ridi Ferdiana; Fahim Jatmiko; Desi Dwi Purwanti; Artmita Sekar Tri Ayu; Wiliam Fajar Dicka
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 8 No 4: November 2019
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1026.557 KB)

Abstract

This paper present a text dataset which can be used in the field of text analysis, especially sentiment analysis. This dataset covers the primary data which consists of 10,806 lines of Indonesian text data originated from Twitter social media, which categorized into three categories that are positive, negative, and neutral; and the raw data which consists of 454,559 lines of unprocessed data. Other than that, on the labeled data, the data is cleaned by removing many kind of noises in the data, such as symbols or urls. In this paper, the presented dataset is tested using a sentiment analysis model to make sure that this dataset is suitable to be used in the field of text analysis. The testing is done by measuring the model accuracy which is trained using this dataset and then comparing it to other model which is trained using already published dataset. After testing the data using various algorithm, such as SVM, KNN, and SGD, the accuracy result between our data and the comparison data are more or less equal with around 4% to 12% differences in accuracy, and prove that the dataset presented in this paper is feasible to be used in sentiment analysis. Dataset can be downloaded from link at conclusion section.
Pemodelan Pengenalan Penanda Augmented Reality Dengan Metaio Creator Yudi Setiawan; Ridi Ferdiana; Rudy Hartanto
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 3 No 3: Agustus 2014
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (327.548 KB)

Abstract

The research is about modeling marker recognition of Augmented Reality with Metaio Creator that desktop based, for getting information from a smartphone specification. This application is run by direct camera pc to marker, then application will give an augmented information about that smartphone. The augmented information are specification, and top features of smartphone. The testing is done by do the marker (natural printed AR marker) recognition process. The testers of that testing are a range of marker recognition and large of marker area that is recognized by AR application. The results are a good range of marker recognition, from marker to pc camera, and a good large of marker area. So user know a good range and area of marker to run Augmented Reality application.
Implikasi Game Edukasi 2D dan 3D : Mengenal Huruf dan Angka Terhadap Anak Dania Eridani; Paulus Insap Santosa; Ridi Ferdiana
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 3 No 1: Februari 2014
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (120.489 KB)

Abstract

This paper contains the results of the developmentand implementation of educational games in 3D , as opposed to methods of learning using educational games 2D and conventional learning methods . The purpose of the application to determine the effectiveness of the use of each learning method and whether or not the development of educational game in 3D as a learning tool . Evaluation of the 91 respondents kindergarten class B of 4 kindergarten in Semarang , 28 respondents in the conventional learning , learning by 32 respondents on educational games 2D , and 31 respondents in the study with 3D educational game . Analysis of the results of the evaluation using the Kruskal - Wallis test . Evaluation material consists of 20 instructional materials related to letters and numbers and associated material response 5 user 3D educational game that will be used . The results of the Kruskal - Wallis analysis showed a difference in learning outcomes and figures hurud using educational games in 3D , 2D and educational game conventional learning . Response 31 users when playing 3D games are 87 % of respondents felt interested in playing games , 81 % of respondents are consistent in playing the game , 100 % of respondents felt the background music and animations used in the game interesting , and 97 % of respondents smoothly when using it with a computer game .