Claim Missing Document
Check
Articles

Found 8 Documents
Search

Karakteristik pencapaian kemampuan pembuktian dan kepercayaan diri mahasiswa melalui metode moore Iyon Maryono; Siska Amanda Lucita Dewi; Agus Hikmat Syaf
Jurnal Analisa Vol 4, No 2 (2018): Volume 4 Nomor 2 Tahun 2018
Publisher : Department of Mathematics Education, UIN Sunan Gunung Djati Bandung, West Java, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/ja.v4i2.3681

Abstract

Pembuktian dalam matematika adalah suatu aktivitas yang penting, tetapi aktivitas ini tergolong sulit bagi mahasiswa calon guru matematika. Masalah ini salah satunya dipengaruhi oleh kepercayaan-diri. Tujuan penelitian ini adalah untuk menganalisis karakteristik pencapaian kemampuan pembuktian matematis dan kepercayaan-diri mahasiswa melalui metode Moore. Penelitian ini menggunakan metode campuran bertahap yaitu tahap kuantitatif dan tahap kualitatif. Pada tahap kuantitatif disimpulkan bahwa kemampuan pembuktian pada kelas yang menggunakan metode Moore lebih baik daripada kelas yang menggunakan model pembelajaran langsung. Metode Moore dapat mengungkap proses perkembangan capaian pembelajaran mahasiswa dalam pembuktian, sehingga dosen dapat memberikan umpan balik untuk mengembangkannya. Pada tahap kualitatif, dihasilkan karakteristik kemampuan pembuktian beberapa mahasiswa. Karakteristik ini ditinjau berdasarkan respon mahasiswa terhadap masalah pembuktian. Pada pembelajaran dengan metode Moore, mahasiswa tidak diperbolehkan membuka bahan ajar, sehingga dosen harus mengikuti alur berpikir mahasiswa dan mengarahkan proses berpikirnya. Sebagai implikasi, metode Moore baik digunakan dengan catatan mahasiswa harus belajar terlebih dahulu sebelum pembelajaran di kelas. Characteristics of achievement of proof ability and student confidence through the Moore methodProving in mathematics is an important activity, but this activity is classified as difficult for prospective mathematics teacher students. This problem is influenced by self-confidence.The purpose of this study was to analyze the characteristics of achievement of students' mathematical proving ability and self-confidence through the Moore method.This study uses a phased mixed method, namely quantitative and qualitative stages. In the quantitative stage, it was concluded that the ability to prove the class using the Moore method is better than the class that uses the direct learning model. Moore's method can reveal the process of developing student learning outcomes in proof, so that lecturers can provide feedback to develop it. In the qualitative stage, the characteristics of the ability of several students are produced. these characteristics are reviewed based on student responses to the problem of proof.In the Moore method of learning, students are not allowed to open teaching materials, so the lecturer must follow the flow of student thinking and direct the thinking process. As an implication, the Moore method is well used with the notes that students must study before learning in class 
Implementasi Advance Organizer Dan M-Apos Dalam Meningkatkan Kemampuan Pemahaman Matematis Siti Rohimah; Juariah Juariah; Iyon Maryono
Jurnal Analisa Vol 3, No 1 (2017): Volume 3 Nomor 1 (2017)
Publisher : Department of Mathematics Education, UIN Sunan Gunung Djati Bandung, West Java, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/ja.v3i1.1502

Abstract

Penelitian ini bertujuan untuk mengkaji peningkatan kemampuanpemahaman matematis siswa melalui model pembelajaran Advance Organizerdan M-APOS. Metode yang digunakan adalah eksperimen semu denganpopulai sembilan kelas. Pengambilan sampel menggunakan teknik clusterrandom sampling, sehingga diperoleh 3 kelas. Tujuan penelitian ini untukmengetahui: (a) Kualitas penerapan model pembelajaran Advance Organizerdan M-APOS; (b) Perbedaan peningkatan kemampuan pemahaman matematissiswa; (c) Sikap siswa terhadap penerapan model pembelajaran AdvanceOrganizer dan M-APOS. Instrumen yang digunakan dalam penelitian ini adalahtes kemampuan pemahaman matematis, lembar observasi, dan skala sikap.Berdasarkan hasil analisis data, diperoleh simpulan: (a) Kualitas penerapanmodel pembelajaran Advance Organizer dan M-APOS terkategori baik; (b)Hasil analisis gain ternomalisasi menggunakan uji ANOVA, dilanjutkandengan analisis post hoc yaitu dengan uji Scheffe, didapat bahwa kemampuanpemahaman matematis siswa yang menggunakan model pembelajaran MAPOSlebih baik daripada yang menggunakan model pembelajaran AdvanceOrganizer dan pembelajaran konvensional; (c) Sebagian besar siswamemberikan respon positif terhadap model pembelajaran Advance Organizerdan M-APOS.
Pengembangan kemampuan pemecahan masalah dan habit of mind matematis mahasiswa melalui teknik self-explanation Iyon Maryono; Rosi Oktaviani Saputri
Jurnal Analisa Vol 5, No 2 (2019): Volume 5 Nomor 2 Tahun 2019
Publisher : Department of Mathematics Education, UIN Sunan Gunung Djati Bandung, West Java, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/ja.v5i2.6258

Abstract

Tujuan penelitian ini adalah untuk menganalisis dampak dari pembelajaran dengan teknik self-explanation pada mahasiswa yang mengikuti kuliah geometri analitik terhadap kemampuan pemecahan masalah dan habit of mind matematis.  Metode penelitian yang digunakan adalah eksperimen semu desain Nonequivalent Control Grup Design. Sampel pada penelitian ini terdiri dari dua kelas yaitu kelas dengan teknik self-explanation (30 orang) dan kelas dengan model pembelajaran langsung (33 orang). Data yang diperoleh berupa tes kemampuan pemecahan masalah matematis dan skala habits of mind matematis. Hasil penelitian menunjukkan bahwa: (a) Peningkatan kemampuan pemecahan masalah matematis mahasiswa yang memperoleh teknik self-explanation lebih baik dibandingkan dengan yeng memperoleh pembelajaran langsung; (b) Pencapaian kemampuan pemecahan masalah matematis mahasiswa yang memperoleh strategi self-explanation lebih baik dibandingkan dengan yang memperoleh pembelajaran langsung berdasarkan tingkat Pengetahuan Awal Matematis (PAM). (c) Mathematical Habit of Mind untuk dimensi: komitmen, kapabilitas dan kebijakan semuanya terkategori positif setelah memperoleh strategi self-explanation.
Students' Mathematical Literacy Ability Adi Julianto Kusnadi; Iyon Maryono; Yayu Nurhayati Rahayu
Gunung Djati Conference Series Vol. 12 (2022): Mathematics Education on Research Publication (MERP I)
Publisher : UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (437.911 KB)

Abstract

Today, learning is growing. Especially in mathematics. Students are expected to not only have the ability to count, but have the ability to apply it in dealing with problems in everyday life. This study aims to analyze students' mathematical literacy skills. This research uses a literature review method which is compiled using library studies, this writing study only recognizes and refers to momentary writing. Thoughts and examination results from the investigations of several investigations that have been carried out, are not discussed in depth in this writing study. The results of the writing study are that mathematical literacy skills are used in dealing with problems in real everyday life. In mathematical literacy, there are four important parts, specifically capturing ideas, dealing with problems, conveying, and implementing systems. These parts can be found in the 21st century capabilities that today everyone hopes to be able to move. This ability can be created by being trained through learning strategies that provide experiences to students. There are many learning strategies or approaches that can facilitate this experience. Further research is needed, given the very fast technological advances, especially mathematical literacy skills have a significant commitment, in fact.
Critical Thinking Skills in Socratic Learning Aulia Putri Timur; Iyon Maryono; Riva Lesta Ariany
Gunung Djati Conference Series Vol. 12 (2022): Mathematics Education on Research Publication (MERP I)
Publisher : UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (493.619 KB)

Abstract

The aim of this study was to determine the implementation of the Socratic method on mathematics learning and relevance in developing critical thinking skills. This research used the library research method. The results showed that the Socratic method can develop critical thinking skills including: (1) the questions in the Socratic method made students have curiosity and self-confidence that could construct critical thinking skills; (2) the Socratic method can bring up indicators of critical thinking skills; (3) the Socratic method can practice the ability to question everything so that it can develop critical thinking skills; and (4) the Socratic method can help students find their own preferences in various problems that can make the quality of critical thinking vary
Students' Mathematical Abstractive Reflective Thinking Ability Through Contextual Learning Akhmad Nurul Mutamam; Wati Susilawati; Iyon Maryono; Ida Nuraida
Gunung Djati Conference Series Vol. 12 (2022): Mathematics Education on Research Publication (MERP I)
Publisher : UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (395.483 KB)

Abstract

Deductive-axiomatic mathematical objects lead to low mathematical ability of students. Therefore, this study aims to examine students' mathematical contextual abstractive abilities. Case studies are used in this research using literature studies. The case in this study is the weak mathematical reflective ability of students who are used to find out the factors that cause the low mathematical reflective ability of students. The results showed that there was still a low ability to think abstractly and contextually mathematically because they were not used to the previous level and lack of experience
The Role of Geogebra Software in Stimulating Students' Mathematical Problem Solving Ability Muhammad Tandhimul Haq; Wati Susilawati; Iyon Maryono; T. Tutut Widiastuti, A
Gunung Djati Conference Series Vol. 12 (2022): Mathematics Education on Research Publication (MERP I)
Publisher : UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (266.118 KB)

Abstract

The reasoning ability of students in terms of solving mathematical problems, especially those related to the side of everyday life, is still very low. So that when face-to-face learning is suddenly replaced with online learning, it makes education actors, especially teachers as educators, difficult. Which causes the decline in students' reasoning abilities to solve problem solving problems due to changing learning activities due to the pandemic. This literature study research aims to show an increase in students' mathematical problem solving ability using Geogebra Software as a help application that can be a solution for teacher confusion and to improve problem solving abilities. The method that will be used in the research is literature study. The stages used are taking and collecting various sources that can support from books, websites, journals, theses and others, whose validity can be justified and then processed into a theoretical and accurate conclusion. Results Based on the analysis of the data obtained, the results show that the use of software with the help of the Geogebra application is considered effective and can be a solution to improve abilities in terms of solving mathematical problems
Bahasa Inggris Syifa Afidah Nurul Arifin; Iyon Maryono
UNION : Jurnal Ilmiah Pendidikan Matematika Vol 11 No 3 (2023)
Publisher : Universitas Sarjanawiyata Tamansiswa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30738/union.v11i3.15981

Abstract

This study aims to determine the characteristics of student errors in solving geometry proof based on Newman's Theory. The research method used is a qualitative research method with a phenomenographic approach. This research was conducted to prevent students from repeating mistakes in advanced geometry courses. The types of errors based on Newman's Theory used in this study are: (1) reading errors in the representation of mathematical symbols; (2) comprehension errors of the proof problem; (3) transformation errors of the proof problem; (4) process skills errors of the proof problem; and (5) encoding errors. The subjects of this study were 15 students, and the instruments used were interview guidelines and documentation. The results of this study are reading errors in the representation of mathematical symbols with an average of 15.81%, with error characteristics that students do not write geometry symbols according to the rules. Comprehension errors of the proof problem with an average of 4.78%. Transformation errors of the proof problem with an average of 26.84%. Process skill errors of proof problems with an average of 29.04%. Encoding errors with an average of 23.53%.