p-Index From 2021 - 2026
6.274
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering Information Technology and Telematics Dinamik Jurnal Ilmiah Dinamika Teknik Bulletin of Electrical Engineering and Informatics International Journal of Advances in Intelligent Informatics Proceeding SENDI_U Proceeding of the Electrical Engineering Computer Science and Informatics Jurnal Informatika Upgris Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Jurnal Abdimas BSI: Jurnal Pengabdian Kepada Masyarakat Jurnal Informatika Jurnal Komputer Terapan IJIS - Indonesian Journal On Information System JURNAL ILMIAH INFORMATIKA JURNAL INSTEK (Informatika Sains dan Teknologi) Jurnal Teknik Informatika UNIKA Santo Thomas INTECOMS: Journal of Information Technology and Computer Science J-SAKTI (Jurnal Sains Komputer dan Informatika) JURTEKSI Jurdimas (Jurnal Pengabdian Kepada Masyarakat) Royal Jurnal Informasi dan Komputer JURNAL MAHAJANA INFORMASI Jurnal Manajemen Informatika dan Sistem Informasi Jurnal Informatika dan Rekayasa Elektronik JATI (Jurnal Mahasiswa Teknik Informatika) BERNAS: Jurnal Pengabdian Kepada Masyarakat Jurnal Ilmiah Intech : Information Technology Journal of UMUS Infotek : Jurnal Informatika dan Teknologi MEANS (Media Informasi Analisa dan Sistem) Journal of Applied Data Sciences Advance Sustainable Science, Engineering and Technology (ASSET) J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Teknik Informatika Unika Santo Thomas (JTIUST) Jurnal Pengabdian Masyarakat Intimas (Jurnal INTIMAS): Inovasi Teknologi Informasi Dan Komputer Untuk Masyarakat Jurnal Rekayasa elektrika
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Enhanced Semarang batik classification using deep learning: a comparative study of CNN architectures Winarno, Edy; Solichan, Achmad; Putra Ramdani, Aditya; Hadikurniawati, Wiwien; Septiarini, Anindita; Hamdani, Hamdani
Bulletin of Electrical Engineering and Informatics Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i5.9347

Abstract

Batik is an important part of Indonesia’s cultural heritage, with each region producing unique designs. In Central Java, Semarang is known for its distinctive batik patterns that reflect rich local traditions. However, many people are still unfamiliar with these designs, which threatens their preservation. This study develops an automated system to classify Semarang batik patterns, showing how technology can help safeguard cultural heritage. A convolutional neural network (CNN) approach was used to recognize ten batik types, including Asem Arang, Asem Sinom, Asem Warak, Blekok, Blekok Warak, Gambang Semarangan, and Kembang Sepatu. Pre-processing steps—such as image resizing, cropping, flipping, and rotation—improved model performance and reduced complexity. Five CNN architectures (MobileNetV2, ResNet-50, DenseNet-121, VGG-16, and EfficientNetB4) were tested using 224×224 input size, Adam optimizer, ReLU activation, and categorical cross-entropy loss. Results show VGG-16, ResNet-50, and DenseNet-121 achieved perfect accuracy (1.0) on a dataset of 3,000 locally collected images. These findings highlight CNN models’ strong potential for batik pattern recognition, supporting digital preservation of Indonesian culture.