p-Index From 2020 - 2025
2.064
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) International Journal of Evaluation and Research in Education (IJERE) IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Jurnal Informatika Jurnal INKOM JIK Jurnal Ilmu Komputer Jurnal Buana Informatika TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics Jurnal Informatika Teknik dan Ilmu Komputer Jurnal Teknologi Informasi dan Ilmu Komputer Journal of Mathematical and Fundamental Sciences Journal of ICT Research and Applications Telematika Journal of Information Systems Engineering and Business Intelligence Jurnal IPTEK-KOM (Jurnal Ilmu Pengetahuan dan Teknologi Komunikasi) Fountain of Informatics Journal Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) RABIT: Jurnal Teknologi dan Sistem Informasi Univrab Jurnal Sains dan Informatika JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI ILKOM Jurnal Ilmiah Jurnal ULTIMA InfoSys Jurnal ULTIMATICS Jurnal ULTIMA Computing Jurnal Ilmiah Media Sisfo Jurnal Informatika KOMPUTA : Jurnal Ilmiah Komputer dan Informatika STRING (Satuan Tulisan Riset dan Inovasi Teknologi) Jurnal Ilmiah Ilmu dan Teknologi Rekayasa JATI EMAS (Jurnal Aplikasi Teknik dan Pengabdian Masyarakat) Indonesian Journal of Electrical Engineering and Computer Science Journal of Applied Data Sciences Prosiding Konferensi Nasional PKM-CSR Jurnal Nasional Teknik Elektro dan Teknologi Informasi Aceh International Journal of Science and Technology Jurnal Teknologi Informasi Indonesia Jurnal Rekayasa Informasi
Claim Missing Document
Check
Articles

SISTEM PAKAR DIAGNOSA POST TRAUMATIC STRESS DISORDER DENGAN METODE FORWARD CHAINING Rizky Zaldi, Mochamad; Hansun, Seng
Rabit : Jurnal Teknologi dan Sistem Informasi Univrab Vol 9 No 2 (2024): Juli
Publisher : LPPM Universitas Abdurrab

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36341/rabit.v9i2.4607

Abstract

Post traumatic stress disorder (PTSD) adalah gangguan yang berkembang pada seseorang karena mengalami peristiwa yang mengejutkan, menakutkan, atau berbahaya. Sayangnya saat ini masih minim pengetahuan masyarakat Indonesia terhadap kesehatan mental sehingga banyak yang tidak mengetahui gejala apa yang telah dialami dan seberapa jauh efek yang sudah terjadi akibat gangguan mental tersebut. Tujuan dalam penelitian ini adalah membuat sistem pakar yang dapat melakukan diagnosa awal gangguan PTSD. Metode forward chaining dimanfaatkan dalam sistem pakar guna mengumpulkan gejala-gejala yang dialami oleh pengguna, mengolahnya berdasarkan basis aturan hingga mencapai kesimpulan. Metode pengembangan sistem pakar yang digunakan adalah Expert System Development Life Cycle (ESDLC) dan pengukuran tingkat kegunaan (Usability) sistem yang dibangun dinilai dengan menggunakan USE questionnaire. Pengujian keakuratan sistem dilakukan bersama pakar yang menunjukkan kesesuaian antara hasil pakar dan hasil sistem. Dari pengukuran tingkat Usability didapatkan hasil sebesar 86.67% yang menunjukkan sistem berguna dalam melakukan diagnosa awal PTSD. Diharapkan dengan adanya sistem pakar ini dapat menjadi sebuah solusi dalam memberi kemudahan akses untuk melakukan diagnosa awal gangguan PTSD.
Sistem Pakar Diagnosa Penyakit Pernapasan dengan Metode Certainty Factor Jhondry, Michael; Hansun, Seng
STRING (Satuan Tulisan Riset dan Inovasi Teknologi) Vol 9, No 2 (2024)
Publisher : Universitas Indraprasta PGRI Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/string.v9i2.23361

Abstract

Respiratory diseases are illnesses that attacks the respiratory organ system in humans. Unfortunately, the general public does not realize that symptoms such as shortness of breath, coughing and others can become serious illnesses if not treated promptly. Therefore, an expert system designed for early diagnosis of respiratory diseases was developed in this research. The Certainty Factor method is applied in this expert system in the form of a website-based software. From the results of the black box testing, it was concluded that the system can provide accurate diagnosis results. Furthermore, the final evaluation by users using the Technology Acceptance Model yielded a result of 89.21%, showing that the developed system can be accepted by users in diagnosing respiratory diseases effectively.
Enforcement of Community Activity Restrictions Level Prediction in Jakarta Using Long Short-Term Memory Network Dewangga, Chendra; Hansun, Seng
Journal of Applied Data Sciences Vol 5, No 4: DECEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i4.318

Abstract

The implementation of restrictions on community activities (Pemberlakuan Pembatasan Kegiatan Masyarakat – PPKM) is a strategy from the Indonesian government in handling the spread of COVID-19. PPKM is divided into four levels which will determine the restriction types that are to be implemented in a region. In this study, we aim to build a website that can predict PPKM levels through COVID-19 daily positive and death cases recorded in the Jakarta City, Indonesia. The prediction system uses the Long Short-Term Memory (LSTM) network and Node.JS as the backend of the website. We also introduced the usage of multivariate approach for this regression task by combining both daily positive and death cases number into the LSTM network. Based on the test scores obtained through evaluation using Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE), it was concluded that the proposed LSTM method could accurately predict the death cases with 0.17% MAPE and 22.68 RMSE but has poor performance in predicting the daily positive cases with 53.11% MAPE and 27.15 RMSE. This might be rooted from the use of multivariate approach during the model development where more variation to the daily positive cases was detected.
Co-Authors Abdul Q. M. Khaliq Airell, Thomas Albert Albert Alethea Suryadibrata Andre Rusli Andreas Budiman Andy Santoso Andy Tanu Ciaputra Arthur Bachtiar Gunawan Aryono, Teddy Audrey Sugiarto Audy Audy Audy Brian Kristianto Brinardi Leonardo Daniel Halim David Hartanto Kamagi David Widodo Dennis Gunawan Dennis Gunawan Dennis Johanes Lesmana Dewangga, Chendra Dharma Pratama Edbert Wibowo Sumarlin Erik Tangganu Erikson Marbun Erwin Ruslim Sia Fandy Ferdian Harryanto Farica Perdana Putri Fransiscus Xaverius Syahasta A.T. Halim, Rendy Hargyo Tri Nugroho I. Hendry Setiawan Henry Setiana Hugeng Hugeng Indah Noviasari Irma Yunita Ivan Oktana Ivana Herliana W. Jayawardanu Jason Christian Jessica Jessica Jessika Wandapranata Jhondry, Michael John Elmer Semaya John, Richard Joko Haryanto Julio Christian Young Kencana Wulan Argakusumah Kevin kevin Kristanda, Marcel Bonar Kristanda, Marcel Bonar Kristian Kristian Kristian Tjandradiredja Lucy Meiliana M. Chaeril Maricar Marbun, Erikson Marcel Bonar Kristanda Marcel Bonar Kristanda Marsel Widjaja Marvin Apriyadi Monica Santika Muh Salehuddin Muhammad Salehuddin Naufal Irfan Hayanto Oktavianus, Alvin P. M. Winarno Peggy Peggy Rasi Rahwali Renaldo Valentdra Rendy Rendy Rizky Zaldi, Mochamad Santo Sinar Pandean Simon Salomon Sirait, Gilbert Stanley Sutedy Stefanie Sirapanji Stephanie Halim Subanar . subanar subanar Sumarlin, Edbert Wibowo Sutedy, Stanley Teddy Aryono Vincentius Wirawan William Aprilius Wiratama, Yustinus Widya Wiratama, Yustinus Widya Wiryaputra, Samuel Yosua Petra Yosua Petra, Yosua Yustinus Vernanda Yustinus Widya Wiratama Yustinus Widya Wiratama