Claim Missing Document
Check
Articles

Found 12 Documents
Search

Subgrade Optimization with Coconut Shell Ash Addition on Glee Gurah Clay Soil Hidayat, Rifki; Azka, Cut Nawalul; Fatimah, Aldina; Firmansyah, Teuku Andrian
Jurnal Komposit: Jurnal Ilmu-ilmu Teknik Sipil Vol. 9 No. 2 (2025)
Publisher : Universitas Ibn Khaldun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32832/komposit.v9i2.19087

Abstract

Improving subgrade bearing capacity is a crucial aspect of highway construction. Clay soils, which have high plasticity and low bearing capacity, often require improvement to increase their stability and strength. This research examines the effect of coconut shell ash addition on the bearing capacity of clay soil in Glee Gurah village. The research aims to identify the impact of coconut shell ash stabilization on the mechanical characteristics of clay soil as a highway subgrade, focusing on soil compaction and CBR values. The research was conducted through a series of laboratory tests which included soil classification according to AASHTO and USCS, as well as compaction (Proctor) and CBR testing. The percentage variations of coconut shell ash used were 0%, 3%, 6%, 9%, and 12%. The results showed that the addition of coconut shell ash increased the bearing capacity of clay soil. The maximum dry volume weight increased from 1.464 gr/cm³ (no mixture) to 1.540 gr/cm³ at the addition of 12% coconut shell ash. The optimum moisture content decreased with increasing ash percentage, from 22.70% to 20.20%. The unsoaked CBR value also increased significantly, from 11.06% (no mixture) to 17.78% at the addition of 12% coconut shell ash, with a total CBR percentage increase of 60.80%. Thus, the use of 12% coconut shell ash > 20% (Good), so that ANOVA shows a p value <0.05, which means that the addition coconut shell ash significantly increases the bearing capacity of clay soil and is effective in strength of subgrades with moderate traffic categories. Key words: Stability, clay, Pavement, subgrade
Prediksi Churn Pelanggan Multinational Bank Menggunakan Algoritma Machine Learning Hidayat, Rifki; Syawaludin, M Ainur; Nurmalitasari, Nurmalitasari
Simpatik: Jurnal Sistem Informasi dan Informatika Vol. 4 No. 2 (2024): Desember 2024
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/simpatik.v4i2.4595

Abstract

Dalam menghadapi persaingan pasar yang ketat, prediksi churn pelanggan menjadi penting bagi perusahaan perbankan untuk mempertahankan loyalitas pelanggan. Penelitian ini mengaplikasikan algoritma machine learning meliputi Naive Bayes, Decision Tree, dan Random Forest untuk prediksi churn pelanggan pada ABC Multinational Bank. Data yang digunakan adalah dataset publik yang diambil dari Kaggle yang mencakup informasi 10.000 nasabah bank. Proses penelitian melibatkan beberapa tahapan yaitu pengumpulan data, preprocessing, pemodelan, prediksi, dan evaluasi. Hasil evaluasi memperlihatkan bahwa model Random Forest memberikan performa terbaik dengan akurasi 85% dan AUC 0.83. Naive Bayes dan Decision Tree masing-masing memiliki akurasi 82% dan 77%. Kesimpulan menunjukkan bahwa Random Forest lebih unggul dalam memprediksi churn pelanggan dibandingkan dua algoritma lainnya, sehingga dapat digunakan untuk strategi pemasaran yang lebih efektif dalam industri perbankan.