Claim Missing Document
Check
Articles

Found 18 Documents
Search
Journal : MATEMATIKA

PROGRAM LINIER FUZZY PENUH DENGAN METODE KUMAR Wahyudy, Shintia Devi; Irawanto, Bambang
MATEMATIKA Vol 17, No 3 (2014): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (51.352 KB)

Abstract

Fully fuzzy linear programing is part of a crisp linear programming (linear programimg with a number of crisp) which the numbers used are fuzzy numbers. Solving a fully fuzzy linear programming problems by using Kumar method to fuzzy optimal solution and crisp optimal value.. Solving fuzzy optimal solution by Kumar method  on triangular fuzzy number to divide into tree objective functions and defuzzification  by using ranking function and  α - cutting to get crisp  optimal solution. This paper discusses about Kumar methods method for solving fully fuzzy linear programming in which fuzzy numbers used are triangular fuzzy numbers.  
MEMBANGUN KODE GOLAY (24, 12, 8) DENGAN MATRIKS GENERATOR DAN MENGGUNAKAN ATURAN KONTRUKSI rizki, ikhsan; Irawanto, Bambang
MATEMATIKA Vol 13, No 1 (2010): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (79.059 KB)

Abstract

The binary (24, 12, 8) extended Golay code can be constructed through the direct sum operation with involve two product codes. This method form the generator matrix framework of the (24, 12, 8) Golay code that is based on the so-called Turyn or |a + x|b + x|a + b + x| construction, where a,b C1 and x C. C1 and C is the (8, 4, 4) linear block codes. C can be gotten by applying construction rules to get the generator matrix of C. With C1 and C and by applying the generator matrix framework of the (24. 12, 8) Golay code get the binary (24, 12, 8) extended Golay code.  
GEOMETRI EUCLID EG(2, pn) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG Irawanto, Bambang; Hidayati, Yuni
MATEMATIKA Vol 10, No 3 (2007): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (63.425 KB)

Abstract

A Balanced Incomplete Block (BIB) design with parameters  is an arrangement of v distinct objects into b bloks such that each block contains exactly k distinct objects, each object occurs in exactly r different blocks, and every pair of distinct object  occurs together in exactly l blocks. Euclidean geometry EG (2, pn) is the finite geometry of two dimensions over the Galois Field GF(pn). By considering that the object of BIB design is same with the points of EG(2, pn) and the blocks which contain those objects are same with the lines which contain the points from EG(2, pn),  EG (2, pn) can be used to construct BIB design.
METODE DEKOMPOSISI DAN METODE BIG-MUNTUK MENYELESAIKAN PROGRAM LINIER VARIABEL FUZZY TRIANGULAR STUDI KASUS: HOME INDUSTRI BOROBUDUR FURNITURE, BOGOR, INDONESIA Puspitasari, Nanda; Irawanto, bambang; ., Widowati
MATEMATIKA Vol 19, No 1 (2016): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (150.591 KB)

Abstract

Fuzzy Variable Linear Programming (FVLP) with triangular fuzzy variable is part of not fully fuzzy linear programming with decision variables and the right side is a fuzzy number. Solving  FVLP with triangular fuzzy variables used Decomposition Methods and Big-M Methods by using Robust Ranking to obtain crisp values. DecompositionMethods of resolving cases maximization and minimization FVLP by dividing the problems into three parts CLP. Solving FVLP with Big-M Methods to directly solve the minimization case FVLP do without confirmation first. The optimal solution fuzzy, crisp optimal solution, optimal objective function fuzzy and crisp optimal objective function  generated from Decomposition Methods and Big-M Methods for minimizing case has same solution. Decomposition Methods has a longer process because it divides the problem into three parts CLP and Big-M Methods has a fewer processes but more complicated because the process without divide the problems into three parts
KONSTRUKSI LEXICOGRAPHIC UNTUK MEMBANGUN KODE HAMMING (7, 4, 3) Aini, Aurora Nur; Irawanto, Bambang
MATEMATIKA Vol 12, No 3 (2009): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6.5 KB)

Abstract

Hamming code can correct single error in massages transmission. Hamming codes can be constructed by Lexicographic codes. Lexicographic construction is a greedy algorithm that produces error correcting codes known as lexicographic codes. There are two ways to construct lexicographic codes. They are greedy construction and lexicographic constructions. Given codes with minimum distance d and length n. To construct the greedy algorithm, the codeword with length n are processed in some fixed order, and the next codeword is inserted in the code when its distance from all codewords previously selected is  d. The Lexicographic Construction is a different approach with a goal to speed up the process of generating lexicodes by storing the reusable information in the memory.  
PROGRAM LINIER FUZZY PENUH DENGAN ALGORITMA MULTI OBJECTIVE LINEAR PROGRAMMING S, Mohammad Ervan; Irawanto, Bambang; ., Sunarsih
MATEMATIKA Vol 18, No 1 (2015): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (49.157 KB)

Abstract

In the linear programming there is one of the certainty assumptions, where each parameters has been known with certainty, but in this real life, the parameters is often can not be stated with certainty, so that the linear programming developed into fully fuzzy linear programming (FFLP). This paper discusses the problem solving FFLP problem with Multi Objective Linear Programming Algorithm. FFLP problem will be converted to MOLP problem with three objective functions by using a new lexicographic ordering on triangular fuzzy numbers and then it is solved by lexicographic method. The value of the fuzzy optimal solution obtained is used to find the optimal value of fuzzy objective function and then do defuzzification to obtain crisp optimal solutions
METODE SIMPLEKS PRIMAL-DUAL PADA PROGRAM LINIER FUZZY PENUH DENGAN BILANGAN TRAPEZOIDAL Irawanto, Bambang; Djuwandi, Djuwandi; Suryoto, Suryoto; Handayani, Rizky
MATEMATIKA Vol 19, No 3 (2016): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (198.268 KB)

Abstract

Program linier dengan koefisien fungsi tujuan bilangan trapezoidal fuzzy (FNLP) dan program linier dengan variabel trapezoidal fuzzy (FVLP) merupakan bentuk dari program linier fuzzy tidak penuh. FNLP memiliki bentuk bilangan trapezoidal fuzzy hanya pada koefisien fungsi tujuannya saja, sedangkan FVLP memiliki bentuk bilangan trapezoidal fuzzy pada variabel keputusan dan konstanta ruas kanannya. Kasus minimasi dari FNLP dan FVLP dapat diselesaikan dengan metode simpleks dual. Bentuk bilangan trapezoidal fuzzy harus diubah ke bentuk bilangan crisp terlebih dahulu dengan menggunakan fungsi peringkat untuk menentukan entering variable dan leaving variablenya.Nilai fungsi tujuan optimalyang dihasilkan berupa bilangan trapezoidal fuzzy dan bilangan crisp.
PENDEKATAN VALUE BILANGAN TRAPEZOIDAL FUZZY DALAM METODE MAGNITUDE Aulia, Lathifatul; Irawanto, Bambang; Surarso, Bayu
MATEMATIKA Vol 20, No 2 (2017): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1054.25 KB)

Abstract

Defuzzification is the process to transform fuzzy numbers into real numbers (crisp). There are some defuzzification methods which can be used to confirm the fuzzy numbers. However, different defuzzification methods produce different real numbers (crisp) too. In this paper, we discuss about Magnitude method, that is an approachment method which can be used in the defuzzification of trapezoidal fuzzy numbers. The defuzzification method  in the calculation considers average between the value of trapezoidal fuzzy numbers and the middle point of two defuzzifier trapezoidal fuzzy numbers