Claim Missing Document
Check
Articles

Socialization of sustainable Pagar Alam Coffee Farming using herbicide reductors Irmeilyana Irmeilyana; Ngudiantoro Ngudiantoro; Sri Indra Maiyanti
Abdimas: Jurnal Pengabdian Masyarakat Universitas Merdeka Malang Vol 7, No 2 (2022): May 2022
Publisher : University of Merdeka Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26905/abdimas.v7i2.6372

Abstract

Many factors affect the low coffee production, including the lack of knowledge and education of farmers about weed control and proper maintenance of coffee plants. Herbicide reductant is a product made from organic as an herbicide-reducing agent so that it can reduce herbicide residue in agricultural areas while being more economical. The community service program aims to socialize and provide knowledge to coffee farmers about the importance of environmentally friendly coffee plantation land cultivation, especially in reducing the dose of herbicides used in weed control. The implementation of the activity was carried out through field studies by filling out questionnaires and interviews in Rimba Candi Village, Dempo Tengah District, Pagar Alam City. Field studies are also a means of socializing environmentally friendly agricultural land processing methods. Coffee farmers have realized the importance of using reducing herbicides for weed control and can apply herbicides properly, at the right dose, at the right target, in the right way, and at the right time. The majority of farmers are better educated than the use of reducing agents can overcome weed control problems more efficiently and effectively, so as to minimize the negative impact of coffee cultivation.
Binary Logistic Regression Modeling on Net Income of Pagar Alam Coffee Farmers Ngudiantoro Ngudiantoro; Irmeilyana Irmeilyana; Mukhlizar Nirwan Samsuri
International Journal of Applied Sciences and Smart Technologies Volume 02, Issue 02, December 2020
Publisher : Universitas Sanata Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24071/ijasst.v2i2.2734

Abstract

Pagar Alam Coffee is a Besemah coffee originating from the Smallholder Plantation in South Sumatra, Indonesia. The majority of Pagar Alam coffee farming is a hereditary business. Coffee farmers' income is very dependent on coffee production, production costs, and coffee prices. This study aims to obtain a probability model of Pagar Alam coffee farmers income based on the factors that influence it. The independent variables studied were the number of dependents, economic conditions, number of trees, age of trees, frequency of fertilizer used, frequency of pesticide used, production at harvest time, production outside harvest time, number of women workers outside the family, minimum price of coffee, maximum price of coffee, farmers' gross income, and land productivity. Modeling used binary logistic regression method on 179 respondents. There were three methods used, i.e. enter method, forward and backward methods. The model using enter method results the greatest prediction accuracy which is 87.7%. The factors that have a significant influence on the net income of Pagar Alam coffee farmers are gross income, land productivity, and the number of women workers from outside the family. The most influential variable is gross income.
Independence Test and Plots in Correspondence Analysis to Explore Tracer Study Data Endang Sri Kresnawati; Irmeilyana Irmeilyana; Ali Amran; Danny Matthew Saputra
International Journal of Applied Sciences and Smart Technologies Volume 03, Issue 02, December 2021
Publisher : Universitas Sanata Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24071/ijasst.v3i2.3891

Abstract

The results of the exploration of tracer study data can be used as information about the career of graduates and the relevance of work to the field of study as well as the competencies obtained before graduation. The question items discussed were a description of the time and process of looking for a job, the length of time to get the first job, the relationship between length of study, gender, field of work, total income, alumni's perception of the closeness of the field of study to work, the suitability of the level of education on the job, and average level of competence. The aim of this study was to analyze the relationship between these variables in the 2020 tracer study data from graduates of all faculties at Sriwijaya University. Respondents studied were 2,669 people. The method used is descriptive statistics, biplot analysis, independence test and plots by simple correspondence analysis. Respondents' perceptions of the suitability of the level of education in employment are related to gender and also with respondents' perceptions of the closeness of the field of study to the field of work. Meanwhile, respondents' perceptions of the closeness of the field of study with work are related to the field of work. The average length of study, the average number of job applications, the number of companies or agencies that responded to applications, and invited interviews for female respondents were lower than male respondents.
Implementasi Algoritma Naïve Bayes dan Support Vector Machine (SVM) Pada Klasifikasi Penyakit Kardiovaskular Anita Desiani; Muhammad Akbar; Irmeilyana Irmeilyana; Ali Amran
Jurnal Teknik Elektro dan Komputasi (ELKOM) Vol 4, No 2 (2022): ELKOM
Publisher : Universitas Muhammadiyah Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32528/elkom.v4i2.7691

Abstract

Penyakit kardiovaskuler adalah penyakit yang diakibatkan penyempitan atau penyumbatan pembuluh darah di jantung penyakit ini disebabkan gangguan fungsi jantung dan pembuluh darah. Sistem kardiovaskular terdiri dari jantung dan pembuluh darahnya. Penelitian ini bertujuan melakukan klasifikasi penyakit kardiovaskular untuk memprediksi suatu pola. Pada penelitian ini akan menggunakan metode support vector machine dan naïve bayes dengan metode latih percentage split dan k-fold cross validation. Hasil akurasi pengolahan menggunakan Algoritma Naïve Bayes adalah sebesar 70% untuk metode latih percentage split dan 71% untuk metode latih k-fold cross validation. Kemudian dengan menggunakan algoritma support vector machine didapat akurasi 61% untuk metode latih percentage split dan 65% untuk metode latih k-fold validation. Hasil tersebut menunjukkan bahwa algoritma naïve bayes dengan metode latih k-fold validation cukup baik dalam melakukan klasifikasi penyakit kardiovaskular.
Model Regresi Data Panel pada Faktor-Faktor yang Mempengaruhi Indeks Pembangunan Manusia (IPM) Sumatera Selatan Tahun 2016-2021 Dwipurwani, O; Irmeilyana; Andini, T
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 19 No. 2 (2022)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/2540766X.2022.v19.i2.15988

Abstract

Indeks Pembangunan Manusia (IPM) dapat menjadi ukuran dalam memahami pola pembangunan sosial ekonomi untuk menilai pertumbuhan ekonomi dan perkembangan negara. Penelitian ini membahas tentang model regresi data panel pada IPM di Sumatera Selatan dari tahun 2016 sampai dengan tahun 2021. Data yang digunakan adalah data sekunder dari Badan Pusat Statistik Provinsi Sumatera Selatan berupa IPM, angka harapan hidup, rata-rata lama sekolah, angka harapan lama sekolah, pertumbuhan penduduk, persentase penduduk miskin dan pengangguran terbuka untuk seluruh kabupaten/kota di Provinsi Sumatera Selatan tahun 2016-2021. Penelitian dimulai dengan menentukan model regresi data panel terbaik, menguji asumsi model regresi data panel, menguji signifikansi parameter dan interpretasi model regresi. Model regresi data panel terbaik yang didapat menggunakan pendekatan Fixed Effect Model pada efek spesifikasi individu dengan nilai R 2= 99,7%. Variabel yang berpengaruh signifikan terhadap IPM adalah angka harapan hidup, rata-rata lama sekolah, angka harapan lama sekolah, dan persentase penduduk miskin. Dari hasil analisis juga didapat daerah dengan kenaikan IPM tertinggi dan terendah di Provinsi Sumatera Selatan pada tahun 2016-2021 secara berturut-turut adalah Kabupaten Musi Rawas Utara dan Kota Pagaralam.
Penerapan Metode Support Vector Machine Dalam Klasifikasi Bunga Iris Anita Desiani; Irmeilyana Irmeilyana; Herlina Hanum; Yuli Andriani; Sri Indra Maiyanti; Clarita Margo Uteh; Ira Rayyani
IJAI (Indonesian Journal of Applied Informatics) Vol 7, No 1 (2022)
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/ijai.v7i1.61486

Abstract

Abstrak Data mining adalah proses melatih komputer untuk mengenali suatu pola menggunakan teknik statistika mapun matematika. Salah satu teknik data mining yang sering digunakan adalah klasifikasi, yakni mengelompokkan data ke dalam suatu label menggunakan atribut. Pada klasifikasi, Support Vector Machine (SVM) merupakan salah satu metode yang paling banyak digunakan. Penelitian ini akan memanfaatkan metode SVM dalam melakukan klasifikasi bunga Iris. Data yang diteliti menggunakan sebanyak 150 data dengan menggunakan dua metode data latih, yakni percentage split dan k-fold cross validation. Data diolah melalui tahap pre-processing, lalu diklasifikasi menggunakan metode SVM melalui 2 metode data latih, percentage split sebesar 80% dan k-fold corss validation dengan k=10, perhitungan hasil prediksi menggunakan confusion matrix. Pada metode percentage split diperoleh nilai akurasi sebesar 96,7%, presisi 97,6%, recall sebesar 95,3%, dan F1-score sebesar 96,3%. Pada metode k-fold cross validation diperoleh nilai akurasi sebesar 92,6%, presisi 92,6%, recall sebesar 92,6%, dan F1-score sebesar 92,3%. Dengan demikian metode SVM menggunakan kernel polynomial dengan metode data latih percentage split dapat diimplementasikan ke dalam sistem klasifikasi bunga Iris.AbstractData mining is the process of training a computer to recognize a pattern using statistical and mathematical techniques. One of the data mining techniques that are often used is classification, which is to group data into the label using attributes. In classification, the Support Vector Machine (SVM) is one of the most widely used methods. This research will utilize the SVM method in classifying Iris flowers. The data studied used 150 data using two training data methods, percentage split and k-fold cross validation. The data is processed through the pre-processing stage, then classified using the SVM method through 2 training data methods, percentage split of 80% and k-fold cross validation with k = 10, and calculation of prediction results using a confusion matrix. In the percentage split method, the accuracy is 96.7%, precision is 97.6%, recall is 95.3%, and F1-score is 96.3%. In the k-fold cross validation method, the accuracy is 92.6%, precision is 92.6%, recall is 92.6%, and F1-score is 92.3%. So that the SVM method using a polynomial kernel with the percentage split training data method can be implemented into the iris classification system.
Pemanfaatan Digital Marketing pada Packing Produk Inovasi Varian Rasa Kekinian Usaha Kue Semprong Desa Tanjung Gelam Kecamatan Indralaya Kabupaten Ogan Ilir Irmeilyana Irmeilyana; Ngudiantoro Ngudiantoro; Sri Indra Maiyanti
Jurnal Vokasi Vol 8, No 2 (2024): Jurnal Vokasi (Juli)
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/vokasi.v8i2.4642

Abstract

Desa Tanjung Gelam dan beberapa desa di sekitarnya merupakan salah satu sentra kue semprong dan kerupuk, terutama kerupuk panggang. Produk yang dijual semuanya hampir sama. Packing produk kue semprong ini relatif masih sangat sederhana dan kurang menjamin bahwa produk dapat lebih tahan lama. Tujuan kegiatan PPM ini adalah untuk memberi penyuluhan/pelatihan kepada khalayak sasaran tentang packing kemasan produk yang dapat menghasilkan performa yang menarik, menjaga ketahanan produk supaya lebih awet, aman, dan kue tidak mudah hancur, serta menunjukkan brand produk termasuk informasi narahubung dan promosi produk. Juga memberi ide dan pengetahuan mengenai inovasi varian rasa dan bentuk kue semprong kekinian pada packing, serta mengenalkan cara penjualan produk kue semprong melalui digital marketing. Metode pelaksanaan kegiatan berupa penyuluhan dan implementasi pemasaran melalui digital marketing. Hasil kegiatan dapat menambah wawasan khalayak mengenai usaha jual beli, tantangan dan hambatan usaha, produk sejenis yang diperjual belikan secara online di beberapa platform marketplace, dan tips keberlanjutan usaha menghadapi perkembangan pemasaran. 
Analisis Metode Certainty Factor dalam Akomodasi Inexact Reasoning pada Sistem Pakar Diagnosa Penyakita Jantung desiani, anita; Lubis, Andika Cristian; Irmeilyana
Journal of Information Technology Vol 5 No 1 (2023): JOINT (Journal of Information Technology)
Publisher : LPPM STMIK AMIK BANDUNG

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Heart is an important organ in the body that is useful as a blood pump with the aim of meeting the needs of oxygen and nutrients to the body. If the heart has impaired performance, blood flow in the body becomes abnormal and can lead to heart disease. The types of heart disease that commonly increase the death rate are coronary heart disease, heart valve disease, and heartbeat disorders (arrhythmia). In this case, there is a need for early detection in a complex manner through a high-accuracy system, namely an expert system. Expert systems contain detailed information about the disease being diagnosed. The Certainty Factor method is a certainty factor method that can overcome the uncertainty (inexact reasoning) of experts in making decisions based on disease symptoms and an interval scale of confidence in the symptoms given by system users. The application of the expert system begins with assembling a system involving the acquisition of knowledge sources explored from heart specialist experts. The analysis obtained on accommodating inexact reasoning on symptoms and the interval scale of the system user's confidence level for 5 test data based on the symptoms felt by the disease sufferer resulted in prediction accuracy for each type of heart disease where 90.46% coronary heart disease in the first test data, 80.76% arrhytmia in the second test data, 87.43% heart valve disease in the third test data, 93.12% coronary heart disease in the fourth test data, and 93.96% heart valve disease in the fifth test data. The application of the certainty factor method to the expert system produces appropriate prediction accuracy so that the expert system designed is effective for measuring certainty in diagnosis and it can be an alternative to early detection of several types of heart disease.
Penerapan Regresi Nonparametrik Spline Truncated Dalam Memodelkan Hubungan Faktor-Faktor Yang Mempengaruhi Indeks Pembangunan Gender (IPG) Di Provinsi Sumatera Utara Irmeilyana, Irmeilyana; Ramadhan, Raihan; Desiani, Anita
JST (Jurnal Sains Terapan) Vol 10, No 1 (2024): JST (Jurnal Sains Terapan)
Publisher : Pusat Penelitian dan Pengabdian kepada Masyarakat, Politeknik Negeri Balikpapan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32487/jst.v10i1.2012

Abstract

Capaian Indeks Pembangunan Gender (IPG) Provinsi Sumatera Utara (Sumut) pada tahun 2021 masih berada di bawah IPG nasional. Provinsi Sumut masih dihadapkan dengan tantangan pembangunan untuk mewujudkan kesetaraan gender seperti rendahnya rata-rata lama sekolah dan tingginya kesenjangan pendapatan antar gender. Hal-hal tersebut menunjukkan bahwa IPG di Provinsi Sumut perlu ditingkatkan. Penelitian ini bertujuan untuk memperoleh model regresi terbaik dan mengetahui faktor-faktor yang berpengaruh signifikan terhadap IPG Provinsi Sumut. Penelitian ini menggunakan metode regresi nonparametrik spline truncated karena pola data antara variabel respon dengan 6 variabel prediktor dari data yang digunakan tidak membentuk pola tertentu. Banyaknya titik knot yang digunakan yaitu 1 knot, 2 knot, 3 knot dan kombinasi knot, serta orde yang digunakan adalah orde 1. Pemilihan titik knot optimal dan model terbaik menggunakan Generalized Cross Validiation (GCV) berdasarkan nilai GCV minimum dan model terbaik yang diperoleh diukur menggunakan koefisien determinasi ( ). Hasil penelitian ini yaitu model regresi nonparametrik spline truncated terbaik menggunakan kombinasi knot (3, 3, 1, 1, 3, 3) dengan nilai GCV minimum sebesar 5,64129. Faktor-faktor yang yang berpengaruh signifikan terhadap IPG di Provinsi Sumut yaitu TPAK perempuan , RLS perempuan , AMH perempuan , dan AHH perempuan . Model terbaik yang diperoleh memiliki nilai  sebesar 92,79% dengan asumsi residual identik, independen, dan distribusi normal (IIDN) terpenuhi.Kata kunci : IPG, Regresi nonparametrik spline truncated, Titik Knot, GCV, Koefisien Determinasi
MODEL REGRESI DATA PANEL PADA FAKTOR-FAKTOR YANG MENENTUKAN PRODUKSI KOPI DI PROVINSI SUMATERA SELATAN TAHUN 2015-2021 Irmeilyana, Irmeilyana; Amalia, Indah; Maiyanti, Sri Indra; Ngudiantoro, Ngudiantoro
JST (Jurnal Sains Terapan) Vol 8, No 1 (2022): JST (Jurnal Sains Terapan)
Publisher : Pusat Penelitian dan Pengabdian kepada Masyarakat, Politeknik Negeri Balikpapan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32487/jst.v8i1.1550

Abstract

Kopi merupakan salah satu komoditas perkebunan unggulan yang ada di Indonesia. Sumatera Selatan merupakan provinsi dengan luas areal dan hasil produksi kopi terbesar di Indonesia. Tujuan penelitian ini yaitu untuk memperoleh model regresi data panel pada faktor-faktor yang menentukan produksi kopi pada 12 kabupaten/kota di Sumatera Selatan tahun 2015-2021. Penelitian ini menggunakan data dari Direktorat Jenderal Perkebunan Kementerian Pertanian Indonesia. Estimasi model regresi data panel dilakukan dengan menggunakan tiga model yaitu Common Effect Model (CEM), Fixed Effect Model (FEM), dan Random Effect Model (REM). Pemilihan model terbaik dilakukan dengan tiga pengujian yaitu uji Chow, uji Hausman dan uji Lagrange Multiplier. Model terbaik yang terpilih yaitu FEM dengan efek individu. Hasil estimasi FEM menunjukkan variabel luas lahan Tanaman Menghasilkan  berpengaruh positif dan mampu menjelaskan total produksi kopi di Provinsi Sumatera Selatan sebesar 85,91%. Model regresi data panel dari FEM adalah  , dengan  merupakan efek individu/wilayah yang menjadi pembeda kabupaten/kota di Provinsi Sumatera Selatan.  Kata kunci:  efek individu, Fixed Effect Model, produksi kopi, regresi data panel
Co-Authors Affandi, Azhar Kholiq Agus lukowi Ajeng Islamia Putri albar Pratama Ali Amran Ali Amran Anasari Anasari Andini, T Anita Desiani Annisa Kartikasari ANNISA NABILA Arhami, Muhammad Arum Setiawan Arum Setiawan Bambang Suprihatin Bella Arisha Berry Gultom Cahyani, Kariah Ayu Cahyono, Endro Setyo Cahyono Calista, Nur Avisa Candra, Stefanie Fortunita Clarita Margo Uteh Danny Matthew Saputra Danny Matthew Saputra Derry Alamsyah Des Alwine Zayanti, Des Alwine Desty Rodiah Dwipurwani, O Endang Sri Kresnawati Enyta Yuniar Fathona Nur Muzayyadah Fauzi Yusuf Syarifuddin Febriyanti, Indrike Ferani Eva Zulvia fildzah daniela, nyayu audy Fitra Nur Azizah Fitri Maya Puspita Hadi Tanuji Herlina Hanum Hermansyah Hermansyah Iffah Husniah Indah Amalia, Indah Indah Verdya Alvionita Indrawati Indrawati Indrawati Indri Andarini Ira Rayyani Juniwati Juniwati Lady Yulita Yulita Laila Hanum Lubis, Andika Cristian M Kahfi Aldi Kurnia Makhalli, Siddiq Maya Meilensa Maya Meilensa Meiza Putri Lestari Mirza Denia Putri Muhammad Akbar Mukhlizar Nirwan Samsuri Mukhlizar Nirwan Samsuri Mutiara, Siti Rahma Narti Narti, Narti Ngudiantoro . Ngudiantoro Ngudiantoro Ning Eliyati NUNI GOFAR Nur Avisa Calista Oky Sanjaya Putra B. J. Bangun Putra BJ Bangun Putra BJ Bangun Putri, Ajeng Islamia Putri, Rizki Eka Putri, Wine Zea Rahayu Tamy Agustin Ramadhan, Raihan Ramayanti, Indri Rana Sania Rana Sania Robinson Sitepu Sasongko, Muhammad Aditya Savera, Mutiara Siddiq Makhalli Simamora, Valentino Sri Indra Maiyanti Sri Indra Maiyanti Sugandi Yahdin Suratama, Bintang Syarifuddin, Fauzi Yusuf Yadi Utama Yuanita Windusari Yuli Andriani Yuniar, Enyta Z, Des Alwine Zubaidah R, Zubaidah