Claim Missing Document
Check
Articles

JARINGAN SYARAF TIRUAN BACKPROPAGATION DENGAN ADAPTIVE MOMENT ESTIMATION UNTUK KLASIFIKASI PENYAKIT COVID-19 DI KALIMANTAN SELATAN Triando Hamonangan Saragih; Nurul Huda
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(2), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/epsilon.v16i2.6792

Abstract

Jaringan syaraf tiruan adalah suatu metode komputasi yang meniru sistem jaringan syaraf biologi. Metode ini menggunakan elemen perhitungan non-linier dasar yang disebut neuron yang diorganisasikan sebagai jaringan yang paling berhubungan, sehingga mirip dengan jaringan syaraf manusia. Salah satu teknik penerapannya bisa dilakukan sebagai metode klasifikasi. Salah satu metode klasifikasi yang sering digunakan yaitu metode Backpropagation. Metode Backpropagation menggunakan konsep supervised learning. Salah satu pendekatan yang bisa dilakukan dalam pembelajarannya dengan melakukan optimasi pembobotan. Metode optimasi yang digunakan yaitu metode optimasi Adaptive Moment Estimation (ADAM). Optimasi ADAM yaitu metode optimasi yang menggunakan konsep stokastik dalam melakukan pencarian parameter terbaik. Data yang digunakan pada penelitian ini yaitu data Covid 19 di Kalimantan Selatan. Data yang digunakan sebanyak 192 kasus yang mana 121 penyakit Covid 19 dan 71 penyakit bukan Covid. Hasil akurasi dari klasifikasi menggunakan metode Backpropagation yang sudah dioptimasi dengan metode ADAM menyatakan lebih baik dibandingkan tanpa optimasi ADAM dengan akurasi rata-rata sebesar 69.77% dan akurasi maksimal terbaik sebesar 71.05%.
IMPLEMENTASI ALGORITMA GENETIKA UNTUK OPTIMASI NEURAL NETWORK PADA STUDI KASUS PERMAINAN TRON Muhammad Darmadi; Irwan Budiman; Muliadi; Andi Farmadi; Triando Hamonangan Saragih
Journal of Data Science and Software Engineering Vol 3 No 02 (2022)
Publisher : Fakultas MIPA Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1491.944 KB)

Abstract

Abstract Tron is played in an arena composed of grids and often both players are placed at different starting points, each player basically playing the game by aiming straight, turning left or turning right until one or both of them hit a wall or laser object. This study aims to examine how good genetic algorithms are in optimizing neural networks for artificial intelligence. As well as to find out what the winning percentage is for each researched artificial intelligence. The results obtained are that N5 is faster in obtaining optimal results, which only requires 9 generations but has the lowest percentage. So it can be concluded that the faster finding optimal results does not guarantee that artificial intelligence will be better..
Prediction of Post-Operative Survival Expectancy in Thoracic Lung Cancer Surgery Using Extreme Learning Machine and SMOTE Ajwa Helisa; Triando Hamonangan Saragih; Irwan Budiman; Fatma Indriani; Dwi Kartini
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 9, No 2 (2023): June
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i2.25973

Abstract

Lung cancer is the most common cause of cancer death globally. Thoracic surgery is a common treatment for patients with lung cancer. However, there are many risks and postoperative complications leading to death. In this study, we will predict life expectancy for lung cancer patients one year after thoracic surgery The data used is secondary data for lung cancer patients in 2007-2011. There are 470 data consisting of 70 death class data and 400 survival class data for one year after surgery. The algorithm used is Extreme learning machine (ELM) for classification, which tends to be fast in the learning process and has good generalization performance. Synthetic Minority Over-sampling (SMOTE) is used to solve the problem of imbalanced data. The proposed solution combines the benefits of using SMOTE for imbalanced data along with ELM. The results show ELM and SMOTE outperform other algorithms such as Naïve Bayes, Decision stump, J48, and Random Forest. The best results on ELM were obtained at 50 neurons with 89.1% accuracy, F-Measure 0.86, and ROC 0.794. In the combination of ELM and SMOTE, the accuracy is 85.22%, F-measure 0.864, and ROC 0.855 on neuron 45 using a data division proportion of 90:10. The test results show that the proposed method can significantly improve the performance of the ELM algorithm in overcoming class imbalance. The contribution of this study is to build a machine learning model with good performance so that it can be a support system for medical informatics experts and doctors in early detection to predict the life expectancy of lung cancer patients.
Perbandingan Ekstraksi Fitur dengan Pembobotan Supervised dan Unsupervised pada Algoritma Random Forest untuk Pemantauan Laporan Penderita COVID-19 di Twitter Sulastri Norindah Sari; Mohammad Reza Faisal; Dwi Kartini; Irwan Budiman; Triando Hamonangan Saragih; Muliadi Muliadi
Jurnal Komputasi Vol 11, No 1 (2023): Jurnal Komputasi
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/komputasi.v11i1.6650

Abstract

Dimasa sekarang masyarakat sudah berani melaporkan dirinya terpapar COVID-19 melalui unggahan di media sosial seperti Twitter. Hal ini dapat dimanfaatkan oleh masyarakat sekitar atau lembaga kesehatan untuk memberikan bantuan terhadap pelapor. Pemantauan laporan penderita COVID-19 di Twitter dapat dilakukan secara otomatis dengan algoritma machine learning untuk klasifikasi teks. Pada kasus klasifikasi teks, algoritma machine learning menerima input berupa data terstruktur hasil ekstraksi fitur dengan teknik unigram dengan pembobotan. Metode pembobotan kata unsupervised merupakan pembobotan yang tidak memperhatikan letak term di kelas positif atau negatif. Kemudian metode pembobotan ini dikembangkan menjadi pembobotan supervised, karena dalam proses pembobotannya metode ini membobotkan term dengan memperhatikan letak term di kelas positif atau negatif. Pada riset ini dilakukan perbandingan kedua jenis pembobotan pada klasifikasi data tweet gejala covid dengan algoritma machine learning yaitu Random Forest. Dari hasil penelitian didapat hasil kinerja klasifikasi dengan pembobotan supervised Delta TF-IDF terbukti lebih bagus dengan akurasi sebesar 88,5% sedangkan dengan pembobotan unsupervised TF-IDF diperoleh hasil akurasi 87,9%
Comparison Algorithm for Diabetes Classification with Consideration of Mutual Information and Information Feature Rahmat Ramadhani; Triando Hamonangan Saragih; Muhammad Itqan Mazdadi; Muliadi Muliadi
Jurnal Komputasi Vol 11, No 1 (2023): Jurnal Komputasi
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/komputasi.v11i1.6649

Abstract

Diabetes is a prevalent disease in humans that is caused by excessive sugar levels in the body. If left untreated, it can lead to severe consequences such as paralysis, decay in certain parts of the body, and even death. Unfortunately, early detection of diabetes is difficult, and many cases go untreated until it is too late. However, the development of technology has opened up new possibilities for early detection and treatment of diabetes. One such approach is classification, a commonly used method in the field of Computer Science. Classification is used in various fields, including health, agriculture, and animal diseases, to draw conclusions based on input data using cause-and-effect relationships. Many different learning concepts and methods can be used in classification, with the Decision Tree concept being one of the most popular examples. This study compares several classification methods, including Decision Tree, Random Forest, AdaBoost, and Stochastic Gradient Boost, with feature selections carried out using MI and IF. The study aims to evaluate the effectiveness of these methods and the influence of feature selection on improving their performance. Based on the results of the study, it can be concluded that feature selection using Mutual Information and Importance Feature can improve the classification accuracy in some methods, particularly in Random Forest, AdaBoost, and Stochastic Gradient Boost. However, the Decision Tree algorithm did not show any improvement in accuracy after feature selection. The best classification accuracy was achieved with the Stochastic Gradient Boost method using the original dataset without feature selection, while the Random Forest method showed the highest accuracy after using all the features. Overall, the results suggest that feature selection can be a useful technique for improving the performance of classification algorithms in diabetes prediction. The study suggests that future research could investigate other classification methods, such as Neural Network or Deep Learning, and use optimization algorithms like Genetic Algorithm or Particle Swarm Optimization to improve feature selection results.
Application of SMOTE to Handle Imbalance Class in Deposit Classification Using the Extreme Gradient Boosting Algorithm Dina Arifah; Triando Hamonangan Saragih; Dwi Kartini; Muliadi Muliadi; Muhammad Itqan Mazdadi
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 9, No 2 (2023): June
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i2.26155

Abstract

Deposits became one of the main products and funding sources for banks and increasing deposit marketing is very important. However, telemarketing as a form of deposit marketing is less effective and efficient as it requires calling every customer for deposit offers. Therefore, the identification of potential deposit customers was necessary so that telemarketing became more effective and efficient by targeting the right customers, thus improving bank marketing performance with the ultimate goal of increasing sources of funding for banks. To identify customers, data mining is used with the UCI Bank Marketing Dataset from a Portuguese banking institution. This dataset consists of 45,211 records with 17 attributes. The classification algorithm used is Extreme Gradient Boosting (XGBoost) which is suitable for large data. The data used has a high-class imbalance, with "yes" and "no" percentages of 11.7% and 88.3%, respectively. Therefore, the proposed solution in the research, which focused on addressing the Imbalance Class in the Bank marketing dataset, was to use Synthetic Minority Over-sampling (SMOTE) and the XGBoost method. The result of the XGBoost study was an accuracy of 0.91016, precision of 0.79476, recall of 0.72928, F1-Score of 0.56198, ROC Area of 0.93831, and AUCPR of 0.63886. After SMOTE was applied, the accuracy was 0.91072, the precision was 0.78883, the recall was 0.75588, F1-Score was 0.59153, ROC Area was 0.93723, and AUCPR was 0.63733. The results showed that XGBoost and SMOTE could outperform other algorithms such as K-Nearest Neighbor, Random Forest, Logistic Regression, Artificial Neural Network, Naïve Bayes, and Support Vector Machine in terms of accuracy. This study contributes to the development of effective machine learning models that can be used as a support system for information technology experts in the finance and banking industries to identify potential customers interested in subscribing to deposits and increasing bank funding sources.
H2O ALGORITHM FOR JATROPHA CURCAS DISEASE IDENTIFICATION WITH FEATURE SELECTION USING GENETIC ALGORITHM Rahmat Ramadhani; Triando Hamonangan Saragih; Muhammad Haekal
Jurnal Teknik Ilmu dan Aplikasi Vol. 4 No. 1 (2023): Jurnal Teknik Ilmu dan Aplikasi
Publisher : Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jtia.v4i1.2788

Abstract

Jatropha curcas is a plant that can be used as a substitute for diesel fuel. Lack of knowledge of farmers and the limited number of experts and extension agents into the problem of dealing with the disease Jatropha curcas plant which resulted in lower quality of Jatropha curcas. H2O Algorithm can be used for Jatropha Curcas disease identification. Based on previous research, H2O Algorithm gave 96.066%. In this research, we used Genetic Algorithm to do feature selection. H2O algorithm with feature selection gave average accuracy 97.03%, that means were better than without feature selection. The parameters that we got are number of populations 600, crossover rate 0.8 and mutation rate 0.2, and number of iterations 400. However, the time spent using feature selection is so longer than without feature selection.
Automated Detection of COVID-19 Cough Sound using Mel-Spectrogram Images and Convolutional Neural Network Muhammad Fauzan Nafiz; Dwi Kartini; Mohammad Reza Faisal; Fatma Indriani; Triando Hamonangan Saragih
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol 9, No 3 (2023): September
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v9i3.26374

Abstract

COVID-19 disease is known as a new disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variant. The initial symptoms of the disease commonly include fever (83-98%), fatigue or myalgia, dry cough (76-82%), and shortness of breath (31-55%). Given the prevalence of coughing as a symptom, artificial intelligence has been employed as a means of detecting COVID-19 based on cough sounds. This study aims to compare the performance of six different Convolutional Neural Network (CNN) models (VGG-16, VGG-19, LeNet-5, AlexNet, ResNet-50, and ResNet-152) in detecting COVID-19 using mel-spectrogram images derived from cough sounds. The training and validation of these CNN models were conducted using the Virufy dataset. Audio data was processed to generate mel-spectrogram images, which were subsequently employed as inputs for the CNN models. The AlexNet model, utilizing an input size of 227x227, exhibited the best performance with the highest Area Under the Curve (AUC) value of 0.930303. This study provides compelling evidence of the efficacy of CNN models in detecting COVID-19 based on cough sounds through the utilization of mel-spectrogram images. Furthermore, the study underscores the impact of input size on model performance. The primary contribution of this research lies in identifying the CNN model that demonstrates the best performance in COVID-19 detection based on cough sounds. Additionally, this study establishes the fundamental groundwork for selecting an appropriate CNN methodology for early detection of COVID-19.
Penerapan Skala Likert pada Klasifikasi Tingkat Kepuasan Pelanggan Agen Brilink Menggunakan Random Forest Amelia Aditya Santika; Triando Hamonangan Saragih; Muliadi Muliadi
JUSTIN (Jurnal Sistem dan Teknologi Informasi) Vol 11, No 3 (2023)
Publisher : Jurusan Informatika Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/justin.v11i3.62086

Abstract

Transaksi perbankan merupakan aktivitas yang sudah menjadi kebutuhan sehari-hari. Agen BRILink menjadi salah satu Smart Service yang dimiliki oleh Bank BRI. Layanan perbankan ini memanfaatkan teknologi untuk menarik pelanggan. Namun, terdapat banyak sekali layanan lain yang disebut sebagai pesaing sehingga diperlukan suatu strategi pelayanan agar dapat memberikan layanan terbaik dari yang terbaik. Dalam membangun strategi tersebut, Bank BRI perlu mengetahui tingkat kepuasan pelanggan melalui Skala Likert sebagai patokan dan perbaikan kedepannya dalam hal pelayanan. Pada Skala Likert dapat mengukur sikap, pendapat, dan persepsi seseorang atau sekelompok orang. Penelitian ini melakukan klasifikasi dengan menggunakan Random Forest tanpa penerapan Skala Likert dan dengan penerapan Skala Likert. Tujuan dari penelitian ini berfokus pada peningkatan akurasi yang dihasilkan oleh Random Forest dengan Skala Likert terhadap data kepuasan pelanggan Agen BRILink. Dari hasil penelitian yang dilakukan Random Forest pada data tanpa Skala Likert diperoleh akurasi sebesar 72% dan nilai Mtry optimal sebesar 2, sedangkan Random Forest dengan Skala Likert diperoleh akurasi sebesar 83,67% dan nilai Ntree optimal sebesar 100. Hasil penelitian ini membuktikan penerapan Skala Likert dapat meningkatkan akurasi terhadap klasifikasi tingkat kepuasan pelanggan agen BRILink menggunakan Random Forest.
Implementation of Information Gain Ratio and Particle Swarm Optimization in the Sentiment Analysis Classification of Covid-19 Vaccine Using Support Vector Machine Muhamad Fawwaz Akbar; Muhammad Itqan Mazdadi; Muliadi; Triando Hamonangan Saragih; Friska Abadi
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 5 No 4 (2023): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v5i4.328

Abstract

In the current digital era, sentiment analysis has become an effective method for identifying and interpreting public opinions on various topics, including public health issues such as COVID-19 vaccination. Vaccination is a crucial measure in tackling this pandemic, but there are still a number of people who are skeptical and reluctant to receive the COVID-19 vaccine. This public perception is largely influenced by, including information received from social media and online platforms. Therefore, sentiment analysis of the COVID-19 vaccine is one way to understand the public's perception of the COVID-19 vaccine. This research has the purpose to enhance the classification performance in sentiment analysis of COVID-19 vaccines by implementing Information Gain Ratio (IGR) and Particle Swarm Optimization (PSO) on the Support Vector Machine (SVM). With a dataset of 2000 entries consisting of 1000 positive labels and 1000 negative labels, validation was performed through a combination of data splitting with an 80:20 ratio and stratified 10-Fold cross-validation. Applying the basic SVM, an accuracy of 0.794 and an AUC value of 0.890 were obtained. Integration with Information Gain Ratio (IGR) feature selection improved the accuracy to 0.814 and an AUC of 0.907. Furthermore, through the combination of SVM based on PSO and IGR, the accuracy significantly improved to 0.837 with an AUC of 0.913. These results demonstrate that the combination of feature selection techniques and parameter optimization can enhance the performance of sentiment classification towards COVID-19 vaccines. The conclusions drawn from this research indicate that the integration of IGR and PSO positively contributes to the effectiveness and predictive capability of the SVM model in sentiment classification tasks.
Co-Authors AA Sudharmawan, AA Abadi, Friska Abdul Latief Abadi Abdullayev, Vugar Achmad Rizal Adawiyah, Laila Afifa, Ridha Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Tajali Aida, Nor Ajwa Helisa Al Ghifari, Muhammad Akmal Alamudin, Muhammad Faiq Alfita Rakhmandasari Amelia Aditya Santika Andi Farmadi Andi Farmadi Anshari, Muhammad Ridha Anshory, Muhammad Naufal Ansyari, Muhammad Ridho Athavale, Vijay Anant Athavale, Vijay Annant Bachtiar, Adam Mukharil Bachtiar, Adam Mukharil Difa Fitria Dina Arifah Diny Melsye Nurul Fajri Diny Melsye Nurul Fajri Dodon Turianto Nugrahadi Dwi Kartini Dwi Kartini, Dwi Dzira Naufia Jawza Erdi, Muhammad Erlianita, Noor Faisal, Mohammad Reza Fatma Indriani Fatma Indriani Favorisen R. Lumbanraja Febrian, Muhamad Michael Friska Abadi Haekal, Muhammad Haekal, Muhammad Hafizah, Rini Hermiati, Arya Syifa Herteno, Rudy Huynh, Phuoc-Hai Ichwan Dwi Nugraha Indriani, Fatma Irwan Budiman Irwan Budiman Itqan Mazdadi, Muhammad Ivan Sitohang Jumadi Mabe Parenreng Keswani, Ryan Rhiveldi Lilies Handayani M. Khairul Rezki Mafazy, Muhammad Meftah Mariana Dewi Muhamad Fawwaz Akbar Muhammad Al Ichsan Nur Rizqi Said Muhammad Alkaff Muhammad Darmadi Muhammad Fauzan Nafiz Muhammad Haekal Muhammad Haekal Muhammad Ikhwan Rizki Muhammad Itqan Mazdadi Muhammad Mursyidan Amini Muhammad Nadim Mubaarok Muhammad Reza Faisal, Muhammad Reza Muhammad Rofiq Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Musyaffa, Muhammad Hafizh Nafiz, Muhammad Fauzan Noryasminda Nugraha, Muhammad Amir Nurcahyati, Ica Nurlatifah Amini Okta Muthia Sari Purwoko, Agus Putra, Aditya Maulana Perdana Radityo Adi Nugroho Rahmat Ramadhani Rahmat Ramadhani Rahmatullah, Satrio Wibowo Ramadhani, Rahmat Ratna Septia Devi Regina Reza Faisal, Mohammad Rizki, M. Alfi Rozaq, Hasri Akbar Awal Rudy Herteno Rudy Herteno Safitri, Yasmin Dwi Said, Muhammad Al Ichsan Nur Rizqi SALLY LUTFIANI Salsha Farahdiba Saputro, Setyo Wahyu Siena, Laifansan Siti Aisyah Solechah Siti Napi'ah Suci Permata Sari Sulastri Norindah Sari Tajali, Ahmad Totok Wianto Vivi Nur Wijayaningrum Wahyu Caesarendra Wayan Firdaus Mahmudy Winda Agustina Yanche Kurniawan Mangalik YILDIZ, Oktay Yusuf Priyo Anggodo Zamzam, Yra Fatria