Claim Missing Document
Check
Articles

Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms Salsha Farahdiba; Dwi Kartini; Radityo Adi Nugroho; Rudy Herteno; Triando Hamonangan Saragih
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 17, No 4 (2023): October
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.88926

Abstract

Breast cancer is a prevalent form of cancer that afflicts women across all nations globally. One of the ways that can be done as a prevention to reduce elevated fatality due to breast cancer is with a detection system that can determine whether a cancer is benign or malignant. Logistic Regression and Support Vector Machine (SVM) classification algorithms are often used to detect this disease, but the use of these two algorithms often doesn’t give optimal results when applied to datasets that have many features, so additional algorithm is needed to improve classification performance by using Backward Elimination feature selection. The comparison of Logistic Regression and SVM algorithms was carried out by applying feature selection to breast cancer data to see the best model. The breast cancer dataset has 30 features and two classes, Benign and Malignant. Backward Elimination has reduced features from 30 features to 13 features, thereby increasing the performance of both classification models. The best classification was obtained by using the Backward Elimination feature selection and linear kernel SVM with an increase in accuracy value from 96.14% to 97.02%, precision from 98.06% to 99.49%, recall from 90.48% to 92.38%, and the AUC from 0.95 to 0.96.
Analisis Seleksi Fitur Binary PSO Pada Klasifikasi Kanker Berdasarkan Data Microarray Menggunakan DWKNN Yanche Kurniawan Mangalik; Triando Hamonangan Saragih; Dodon Turianto Nugrahadi; Muliadi Muliadi; Muhammad Itqan Mazdadi
Jurnal Informatika Polinema Vol. 9 No. 2 (2023): Vol 9 No 2 (2023)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v9i2.1128

Abstract

Salah satu penyakit mematikan penyebab kematian terbesar secara global adalah kanker. Kematian akibat kanker dapat diredam melalui deteksi dini terhadap kanker dengan memanfaatkan teknologi microarray. Namun teknologi ini memiliki kekurangan, yaitu jumlah gen (fitur) yang terlalu banyak. Kekurangan tersebut dapat diatasi dengan melakukan seleksi fitur terhadap data microarray. Salah satu algoritma seleksi fitur yang dapat digunakan adalah Binary Particle Swarm Optimizationi (BPSO). Pada penelitian ini, dilakukan seleksi fitur dengan BPSO pada data microarray dan klasifikasi menggunakan Distance Weighted KNN (DWKNN). Kemudian akan dilihat perbandingan hasil akurasi, presisi, recall, dan f1-score antara DWKNN dan BPSO-DWKNN. Seleksi fitur dan klasifikasi (BPSO-DWKNN) pada dataset Leukemia menghasilkan akurasi, presisi, recall, dan f1-score tertinggi beturut-turut sebesar 93,12%, 94,39%, 95,92%, dan 94,8%. Pada dataset Lung Cancer diperoleh akurasi, presisi, recall, dan f1-score tertinggi beturut-turut sebesar 98,36%, 98,77%, 99,35%, dan 99,03%. Pada dataset Prostate Cancer diperoleh akurasi, presisi, recall, dan f1-score tertinggi beturut-turut sebesar 86,81%, 89,13%, 88,04%, dan 88,07%. Pada dataset Diffuse Large B-Cell Lymphome diperoleh akurasi, presisi, recall, dan f1-score tertinggi beturut-turut sebesar 85,8%, 93,21%, 88,1%, dan 89,76%. Hasil perbandingan menunjukkan peningkatan akurasi, presisi, recall, dan f1-score pada algoritma DWKNN dengan seleksi fitur BPSO dibandingkan dengan algoritma DWKNN tanpa seleksi fitur BPSO.
IMPLEMENTASI SMOTE DAN EXTREME LEARNING MACHINES PADA KLASIFIKASI DATASET MICROARRAY Ivan Sitohang; Triando Hamonangan Saragih; Dwi Kartini; Radityo Adi Nugroho; Mohammad Reza Faisal
Jurnal Informatika Polinema Vol. 8 No. 4 (2022): Vol 8 No 4 (2022)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v8i4.1029

Abstract

Tumor otak merupakan salah satu penyakit penyebab kematian terbesar secara global. Banyak cara untuk mendeteksi penyakit tumor otak dengan cara pengambilan struktur DNA microarray pada protein tumor otak lalu melakukan klasifikasi dengan menggunakan machine learning. Hasil penelitian ini adalah untuk mengetahui keakuratan dalam pengklasifikasian tumor otak dengan menggunakan metode Extreme Learning Machines dengan dan tanpa menggunakan oversampling SMOTE pada keseluruhan data. Performa kinerja klasifikasi tertinggi setiap model antara lain model Extreme Learning Machines mendapatkan akurasi sebesar 97.43% pada hidden neuron = 500. Lalu Extreme Learning Machines menggunakan oversampling SMOTE pada keseluruhan data menghasilkan akurasi sebesar 92.30% pada hidden neuron = 200. Pada penelitian ini didapatkan bahwa penggunaan hidden neuron serta penyeimbangan data pada klasifikasi data microarray sangat berpengaruh dalam akurasi yang akan didapatkan dalam penelitian ini.
IMPLEMENTASI ALGORITMA GENETIKA UNTUK SELEKSI FITUR PADA KLASIFIKASI GENRE MUSIK MENGGUNAKAN METODE RANDOM FOREST Nurlatifah Amini; Triando Hamonangan Saragih; Mohammad Reza Faisal; Andi Farmadi; Friska Abadi
Jurnal Informatika Polinema Vol. 9 No. 1 (2022): Vol 9 No 1 (2022)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v9i1.1028

Abstract

Musik memiliki jenis yang beragam di Dunia. Adapun jenis musik yang paling popular diantaranya yaitu pop, disco, country, dangdut, jazz, blues, reggae, hiphop, rock, metal. Penelitian ini mengenai Klasifikasi genre musik menggunakan metode Random Forest menggunakan dataset dari GitHub atau GTZAN tentang genre musik dengan jumlah label ada 10, memiliki 26 fitur dan jumlah keseluruhan data ada 1000. Penelitian ini dibagi menjadi beberapa tahap, yaitu dengan klasifikasi seluruh data, mengklasifikasi dengan data yang dinormalisasi, melakukan klasifikasi dengan data asli menggunakan tahap seleksi fitur Algoritma Genetika, dan mengklasifikasi pada data yang dinormalisasi dengan seleksi fitur menggunakan Algoritma Genetika. Parameter yang digunakan pada Algoritma Genetika yaitu menggunakan Probabilitas Crossover, Probabilitas Mutasi. Pada penelitian ini Min-Max digunakan untuk metode normalisasi data, dan untuk perhitungan akurasi menggunakan metode Confusion Matrix. Peformasi terbaik dari parameter GA untuk Pc dan Pm menggunakan kombinasi 0.5 dan 0.2. Performasi populasi size terbaik adalah 26 dan iterasi atau max generasi terbaik ada pada 100 iterasi. Akurasi yang dihasilkan ketika menggunakan seluruh data menghasilkan akurasi sebesar 62%, 59% dengan data yang dinormalisasi, 64% dengan semua data menggunakan seleksi fitur Algoritma Genetika dan didapatkan akurasi sebesar 67% dengan menggunakan seleksi fitur Algoritma Genetika yang datanya dinormalisasi. Hasil ini memberi pengetahuan nilai rata-rata akurasi menunjukkan peningkatan dengan diterapkannya seleksi fitur Algoritma Genetika.
Implementasi Ekstraksi Fitur GLCM dengan Klasifikasi Algoritma C5.0 Pada Data Computerized Tomography Scan Covid-19 MUHAMMAD ROFIQ; Triando Hamonangan Saragih; Dodon Turianto Nugrahadi
Jurnal Informatika Polinema Vol. 9 No. 4 (2023): Vol. 9 No. 4 (2023)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v9i4.1280

Abstract

Teknologi pencitraan digital telah banyak digunakan dalam bidang medis dalam diagnosis data citra biologis untuk memandu dokter untuk mengetahui kondisi pasien. Salah satu teknik pencitraan medis yang dapat menggambarkan kondisi di dalam tubuh manusia adalah Computed Tomography (CT). Penelitian ini menggunakan dataset citra CT scan dada berjumlah 625 data CT. Ekstraksi fitur yang digunakan untuk mendapatkan beberapa fitur statistik tentang citra adalah GLCM (Gray Level Co-Occurrence Matrix). Dalam GLCM Jarak direpresentasikan sebagai piksel sedangkan orientasi direpresentasikan dalam derajat. Orientasi terbentuk dari empat arah sudut dengan interval 0°, 45°, 90°, dan 135°. Sedangkan jarak antar piksel biasanya ditetapkan sebesar 1 piksel. Setelah dilakukan ektraksi fitur akan dilakukan klasifikasi dengan menggunakan metode algoritma C5.0 Hasil akurasi dari metode klasifikasi C5.0 menggunakan ektraksi fitur GLCM mendapatkan hasil akurasi sebesar 87% pada sudut 90°, 84% pada sudut 45°, 83% pada sudut 135°, dan 82% pada sudut 0°.
PERBANDINGAN METODE EXTREME GRADIENT BOOSTING DAN METODE DECISION TREE UNTUK KLASIFIKASI GENRE MUSIK SALLY LUTFIANI; Triando Hamonangan Saragih; Friska Abadi; Mohammad Reza Faisal; Dwi Kartini
Jurnal Informatika Polinema Vol. 9 No. 4 (2023): Vol. 9 No. 4 (2023)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v9i4.1319

Abstract

Musik merupakan sebuah “bahasa” yang mampu dimengerti dan dipahami oleh semua orang. Dalam musik sendiri, terdapat banyak genre musik yang berkembang yang dipengaruhi oleh budaya dari daerah-daerah yang berbeda-beda, seperti musik jazz, reggae, pop, rock, punk, dan masih banyak lagi genre musik yang ada seperti musik tradisional. Bertambahnya jumlah musik dalam bentuk digital secara pesat menyebabkan pemberian label genre secara manual menjadi tidak efektif. Pemberian label genre secara otomatis dapat dilakukan dengan menerapkan algoritma kecerdasan buatan yaitu salah satunya klasifikasi yang dapat mengelompokkan jenis musik berdasarkan genre dengan menggunakan fitur-fitur musik. Salah satu metode klasifikasi yang cukup sering digunakan adalah metode Extreme Gradient Boosting. Metode ini seringkali digunakan karena kecepatan, efisiensi dan skalabilitasnya untuk memecahkan beragam masalah klasifikasi ataupun regresi. Selain itu ada juga metode yang sering digunakan dalam melakukan klasifikasi yaitu metode Decision Tree yang merupakan metode pohon keputusan mengubah fakta yang sangat besar menjadi pohon keputusan yang merepresentasikan aturan dan juga berguna untuk mengekplorasi data, menemukan hubungan tersembunyi antara sejumlah calon variabel input dengan sebuah variabel target. Karena kedua metode ini termasuk dalam rumpun keluarga pohon atau ensemble learning, maka dilakukan perbandingan antara kedua metode tersebut. Pada penelitian ini melakukan perbandingan tingkat akurasi metode klasifikasi Extreme Gradient Boosting dan metode klasifikasi Decision Tree dengan melakukan pengujian parameter menggunakan nilai parameter terbaik yang didapatkan. Berdasarkan hasil penelitian metode klasifikasi Extreme Gradient Boosting dengan pengujian parameter menggunakan nilai parameter terbaik yang didapatkan menghasilkan kinerja akurasi yang lebih baik dibandingkan dengan metode klasifikasi Decision Tree yaitu sebesar 72% karena pada metode Extreme Gradient Bossting ini mampu meminimalisir eror dengan menggunakan data residu atau kesalahan prediksi pada model sebelumnya sehingga bisa mendapatkan dan mengoptimalkan hasil akurasi terbaik, yang membuktikan bahwa metode klasifikasi Extreme Gradient Boosting lebih baik dibandingkan dengan metode klasifikasi Decision Tree dengan pengujian parameter.
ANALISIS SENTIMEN BRAND AMBASSADOR BTS TERHADAP TOKOPEDIA MENGGUNAKAN KLASIFIKASI BAYESIAN NETWORK DENGAN EKSTRAKSI FITUR TF-IDF Regina; Triando Hamonangan Saragih; Dwi Kartini
Jurnal Informatika Polinema Vol. 9 No. 4 (2023): Vol. 9 No. 4 (2023)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v9i4.1333

Abstract

BTS (Bangtan Boys) adalah salah satu boy grup asal korea selatan yang ditunjuk oleh Tokopedia untuk menjadi brand ambassador Tokopedia di Indonesia, BTS merupakan salah satu boy grup yang sangat mendunia dalam bidang musik dan Tokopedia merupakan salah satu E-commerce terkenal yang banyak digunakan oleh masyarakat indonesia untuk melakukan jual beli online. Kerjasama ini tentu saja memberikan pengaruh terhadap Tokopedia serta memperoleh banyak respon berupa opini masyarakat terutama pada media sosial twitter, karena hal tersebut maka dilakukan penelitian analisis sentiment. Data yang digunakan yaitu 900 data tweet dan terbagi menjadi 3 kelas yaitu positif, negatif, dan netral. Tahapan penilitian terdiri dari pengambilan dan pengumpulan data, preprocessing data, ekstraksi fitur dengan Term Frequency - Inverse Document Frequency (TF-IDF), klasifikasi dengan Bayesian network, evaluasi kinerja menggunakan K-fold cross validation (K-10) dan confution matrix. Perbandingan terjadi pada tahap preprocessing data, yaitu saat menggunakan normalisasi data dan tidak menggunakan normalisasi data, dari hasil perbandingan tersebut diperoleh nilai akurasi jika tidak menggunakan normalisasi data sebesar 66,6667%, presisi sebesar 68,1%, dan recall sebesar 66,7%. Sedangkan hasil akurasi dengan menggunakan normalisasi data sebesar 76,5556%, presisi sebesar 77,4%, dan recall sebesar 76,6%. Selisih nilai akurasi dari kedua percobaan sebesar 9,8889 %, hal ini membuktikan bahwa menggunakan normalisasi data lebih baik.
Klasifikasi Harapan Hidup Pasien Karsinoma Hepatoseluler Menggunakan Extreme Learning Machine Dengan Perbaikan Data Hilang Suci Permata Sari; Triando Hamonangan Saragih; Andi Farmadi; Radityo Adi Nugroho; Rudy Herteno
Jurnal Informatika Polinema Vol. 9 No. 4 (2023): Vol. 9 No. 4 (2023)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v9i4.1287

Abstract

International Agency for Research on Cancer (IARC) mengestimasi bahwa pada tahun 2020 kanker hati primer berada di peringkat ke-6 sebagai kanker yang paling banyak didiagnosis dan peringkat ke-3 sebagai penyebab utama kematian akibat kanker di dunia. Mayoritas kanker hati primer muncul dari sel-sel hati dan disebut Karsinoma Hepatoseluler (KHS). Salah satu upaya yang dapat dilakukan untuk mengatasi permasalahan tersebut adalah dengan mengklasifikasikan harapan hidup pasien KHS. Terdapat banyak metode yang dapat digunakan dalam klasifikasi, salah satunya adalah menggunakan Extreme Learning Machine (ELM). Dataset yang digunakan pada penelitian ini adalah HCC Survival Data Set yang memiliki 49 fitur dengan rata-rata data hilang sebesar 10,22% secara keseluruhannya. ELM merupakan metode yang mengharuskan semua data pada datasetnya lengkap tanpa memiliki data hilang. Sehingga harus dilakukan penanganan data hilang terlebih dahulu sebelum dilakukan klasifikasi. Penanganan data hilang pada penelitian ini dilakukan dengan menggunakan teknik imputasi. Pada penelitian ini dilakukan perbandingan antara hasil klasifikasi dari data yang diimputasi menggunakan MissForest dengan hasil klasifkasi dari data yang diimputasi menggunakan K-Nearest Neighbors Imputation (KNNI). Perbandingan tersebut dilakukan untuk mengetahui metode imputasi mana yang menghasilkan data imputasi dengan kinerja terbaik pada klasifikasi kelangsungan hidup pasien KHS. Hasil menunjukkan bahwa data yang diimputasi menggunakan KNNI menghasilkan nilai akurasi rata-rata dan nilai rata-rata AUC yang lebih unggul dibandingkan dengan data yang diimputasi dengan MissForest, yaitu dengan nilai akurasi rata-rata sebesar 92,941% dan rata-rata AUC sebesar 0,9758.
PENERAPAN MWMOTE UNTUK MENGATASI KETIDAKSEIMBANGAN KELAS PADA KLASIFIKASI RISIKO KREDIT Maria Ulfah; Triando Hamonangan Saragih; Dwi Kartini; Muhammad Itqan Mazdadi; Friska Abadi
Jurnal Informatika Polinema Vol. 9 No. 4 (2023): Vol. 9 No. 4 (2023)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v9i4.1331

Abstract

Salah satu bentuk usaha yang dijalankan oleh perbankan adalah pemberian kredit terhadap nasabaah. Bank akan selalu berusaha mengoptimalkan penyaluran kredit terhadap nasabah, akan tetapi tidak menutup kemungkinan bahwa kredit yang diberikan tersebut memiliki risiko. Guna menekan dan meminimalisir risiko kredit pihak bank perlu melakukan analisis terhadap data yang dimiliki nasabah agar dapat mengambil keputusan apakah nasabah atau calon debitur layak diberikan pinjaman dalam bentuk kredit. Salah satu cara untuk menyelesaikan masalah analisa risiko kredit adalah dengan melakukan klasifikasi dengan menggunakan machine learning. Pada penelitian ini dilakukan klasifikasi dengan menggunakan algoritma Support Vector Machine (SVM) serta oversampling data dengan menggunakan MWMOTE dan Improve MWMOTE. Data yang digunakan pada penelitian ini adalah data german credit risk yang memiliki Kelas bad credit yang terdiri atas 300 data dan kelas good credit terdiri atas 700 data. Penelitian dilakukan dengan membandingkan klasifikasi SVM dengan dan tanpa oversampling. Hasilnya didapatkan bahwa nilai akurasi dari klasifikasi Improve MWMOTE SVM memiliki nilai tertinggi jika dibandingan dengan SVM MWMOTE, dan SVM yaitu sebesar 77,95%.
Penerapan SMOTE-NCL untuk Mengatasi Ketidakseimbangan Kelas pada Klasifikasi Penyakit Jantung Koroner Mariana Dewi; Triando Hamonangan Saragih; Rudy Herteno
Jurnal Informatika Polinema Vol. 10 No. 1 (2023): Vol 10 No 1 (2023)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v10i1.1394

Abstract

Penyakit jantung koroner (PJK) terjadi akibat penyumbatan atau penyempitan pada pembuluh darah jantung karena adanya endapan lemak dan kolesterol sehingga mengakibatkan suplai darah ke jantung menjadi terganggu. PJK masih merupakan masalah kesehatan yang penting dan berdampak secara sosioekonomi karena biaya obat-obatan yang cukup mahal dan lamanya waktu perawatan serta pengobatannya. Upaya pencegahan melalui deteksi dini dan upaya pengendaliannya sangat penting untuk dilakukan. Salah satu cara untuk mendeteksi penyakit jantung koroner dengan memanfaatkan teknologi komputasi, yaitu melakukan klasifikasi menggunakan algoritma tertentu. Pada penelitian ini dilakukan klasifikasi dengan menggunakan algoritma Support Vector Machine (SVM) serta penanganan ketidakseimbangan data menggunakan SMOTE dan SMOTE-NCL. Data yang digunakan dalam penelitian ini adalah data Coronary Heart Disease yang memiliki dua buah kelas, yaitu kelas 0 (negatif PJK) dan kelas 1 (positif PJK) dengan permasalahan data yang tidak seimbang. Penelitian ini dilakukan dengan membandingkan kinerja dari klasifikasi SVM tanpa dilakukan penyeimbangan data, klasifikasi SVM dengan penyeimbangan data SMOTE, dan kalsifikasi SVM dengan penyeimbangan data SMOTE-NCL. Hasil yang didapatkan dari penelitian ini adalah pada klasifikasi SVM dengan penyeimbangan data SMOTE-NCL menghasilkan kinerja terbaik jika dibandingkan dengan model klasifikasi lain dengan nilai akurasi sebesar 85,10%.
Co-Authors AA Sudharmawan, AA Abadi, Friska Abdul Latief Abadi Abdullayev, Vugar Achmad Rizal Adawiyah, Laila Afifa, Ridha Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Tajali Aida, Nor Ajwa Helisa Al Ghifari, Muhammad Akmal Alamudin, Muhammad Faiq Alfita Rakhmandasari Amelia Aditya Santika Andi Farmadi Andi Farmadi Anshari, Muhammad Ridha Anshory, Muhammad Naufal Ansyari, Muhammad Ridho Athavale, Vijay Anant Athavale, Vijay Annant Bachtiar, Adam Mukharil Bachtiar, Adam Mukharil Difa Fitria Dina Arifah Diny Melsye Nurul Fajri Diny Melsye Nurul Fajri Dodon Turianto Nugrahadi Dwi Kartini Dwi Kartini, Dwi Dzira Naufia Jawza Erdi, Muhammad Erlianita, Noor Faisal, Mohammad Reza Fatma Indriani Fatma Indriani Favorisen R. Lumbanraja Febrian, Muhamad Michael Friska Abadi Haekal, Muhammad Haekal, Muhammad Hafizah, Rini Hermiati, Arya Syifa Herteno, Rudy Huynh, Phuoc-Hai Ichwan Dwi Nugraha Indriani, Fatma Irwan Budiman Irwan Budiman Itqan Mazdadi, Muhammad Ivan Sitohang Jumadi Mabe Parenreng Keswani, Ryan Rhiveldi Lilies Handayani M. Khairul Rezki Mafazy, Muhammad Meftah Mariana Dewi Muhamad Fawwaz Akbar Muhammad Al Ichsan Nur Rizqi Said Muhammad Alkaff Muhammad Darmadi Muhammad Fauzan Nafiz Muhammad Haekal Muhammad Haekal Muhammad Ikhwan Rizki Muhammad Itqan Mazdadi Muhammad Mursyidan Amini Muhammad Nadim Mubaarok Muhammad Reza Faisal, Muhammad Reza Muhammad Rofiq Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Muliadi Musyaffa, Muhammad Hafizh Nafiz, Muhammad Fauzan Noryasminda Nugraha, Muhammad Amir Nurcahyati, Ica Nurlatifah Amini Okta Muthia Sari Purwoko, Agus Putra, Aditya Maulana Perdana Radityo Adi Nugroho Rahmat Ramadhani Rahmat Ramadhani Rahmatullah, Satrio Wibowo Ramadhani, Rahmat Ratna Septia Devi Regina Reza Faisal, Mohammad Rizki, M. Alfi Rozaq, Hasri Akbar Awal Rudy Herteno Rudy Herteno Safitri, Yasmin Dwi Said, Muhammad Al Ichsan Nur Rizqi SALLY LUTFIANI Salsha Farahdiba Saputro, Setyo Wahyu Siena, Laifansan Siti Aisyah Solechah Siti Napi'ah Suci Permata Sari Sulastri Norindah Sari Tajali, Ahmad Totok Wianto Vivi Nur Wijayaningrum Wahyu Caesarendra Wayan Firdaus Mahmudy Winda Agustina Yanche Kurniawan Mangalik YILDIZ, Oktay Yusuf Priyo Anggodo Zamzam, Yra Fatria