Claim Missing Document
Check
Articles

Forecasting the Number of Tuberculosis Patients Using Automatic Clustering And Fuzzy Logical Relationship Method Rahmawati Rahmawati; Sarbaini Sarbaini; Ade Novia Rahma; Tri Uci Lestari; Fitri Aryani
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 8, No 2 (2023): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v8i2.18073

Abstract

Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis bacillus, which infects the lungs and can potentially cause death.  This study aims to predict the number of tuberculosis sufferers in Kampar Regency in 2022. The method used is the automatic clustering and fuzzy logical relationship method. The data analyzed is secondary data obtained from the Kampar District Health Office from 2017 to 2021. From the results of the analysis carried out using the automatic clustering and fuzzy logical relationship method, it was obtained to forecast the number of tuberculosis patients in 2022, as many as  944 people with MAPE of 0.0882%, the accuracy of forecasting results of 99.9118%, and an increase in the number of tuberculosis sufferers from 2021 to 2022 as many as 4 people.
Special Form Hankel Matrix Inverses (n+1)×(n+1),n≥3 With 2×2 Block Matrices Rahma, Ade Novia; Azzahra, Frista; Aryani, Fitri; Rahmawati, Rahmawati
Zeta - Math Journal Vol 10 No 1 (2025): May
Publisher : Universitas Islam Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31102/zeta.2025.10.1.1-10

Abstract

This study aims to determine the inverse of a special form Hankel matrix using a block matrix. In this study, some steps are carried out. The first step will be given a special form Hankel matrix which will then be blocked into a block matrix. Next, determine the inverse of the invertible submatrix of the Hankel matrix so that the general form is obtained. The last step is seen from the inverse pattern of the two ways of blocking the Hankel matrix of the unique structure of order to so that the general shape of the inverse Hankel matrix of special form is obtained. The results obtained will be obtained in the general structure of the Hankel matrix inverse special form, using a block matrix.
Invers Matriks RLPrFrLcirc (0,…,0,a,a) Ordo n×n Dengan n≥3 Menggunakan Matriks Blok 2×2 Rahma, Ade Novia; Asyura Nurislam, Asyura; Aryani, Fitri; Marzuki, Corry Corazon
Jurnal Sains Matematika dan Statistika Vol 11, No 2 (2025): JSMS Juli 2025
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/jsms.v11i2.28648

Abstract

 [1]        H. Anton dan C. Rorres, Aljabar Linear Elementer edisi kedelapan. 2004. [2]        B. J. Olson, S. W. Shaw, C. Shi, C. Pierre, dan R. G. Parker, “Circulant matrices and their application to vibration analysis,” Applied Mechanics Reviews, vol. 66, no. 4, 2014. [3]        Lin Jiang Z, Ben Xu Z, "Efficient Alghorithm For Finding The Inverse And The Group Inverse of FLS r-Circulant Matrix", J. Appl. Math & Computing, vol 18, no. 1-2, hal. 45-47, 2005. [4]        Pan, Xue dan Qin, Mei, "The Discriminance for FLDcircr Matrices and the Fast Alghorithm of Their Invers and Generalized Inverse", vol. 05, hal. 54-61, Shanghai, 2015. [5]        Jiang, Xiaoyu dan Hong, Kicheon, "Exact Determinants of some Special Circulant Matrices Involving Four Kinds of Famous Numbers", Hindawi Publishing Corporation Abstract and Applied Analysist, hal. 1-12, 2014. [6]        T. Xu, Z. Jiang, dan Z. Jiang, “Explicit Determinants of the RFPrLrR Circulant and RLPrFrL Circulant Matrices Involving Some Famous Numbers,” in Abstract and Applied Analysis, 2014, vol. 2014.  [7]        R. Rahmawati, N. Fitri, dan A. N. Rahma, “Invers Matriks RSFPLRcircfr ,” Jurnal Sains Matematika dan Statistika, vol. 6, no. 1, hal. 113–121, 2020. [8]        Z. Hasanah, Y. Muda, F. Aryani, dan C. C. Marzuki, “Determinan Dan Invers Matriks Blok  Dalam Aplikasi Matriks FLScircr Bentuk Khusus,” Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 11, 2019. [9]        A. N. Rahma, M. Anggelina, dan R. Rahmawati, “Invers Matriks Blok Dalam Aplikasi Matriks FLDcircr Bentuk Khusus,” Seminar Nasional Teknologi Informasi Komunikasi dan Industri, hal. 334–344, 2019. [10]      R. Edrian, “Invers Matriks RSLPFLcircfr Bentuk Khusus  Berordo  Dengan  Menggunakan Matriks Blok  Universitas Islam Negeri Sultan Syarif Kasim Riau, 2022. [11]      H. Fikri, “Invers Matriks RFPLRcircfr Bentuk Khusus  Berordo  Dengan  Menggunakan Matriks Blok  Universitas Islam Negeri Sultan Syarif Kasim Riau, 2022. [12]     E. Rainarli, M. Si, K. E. Dewi, M.Si, and J. T. Informatika, Aljabar Linear dan Matriks. 2011. [13]      A. Yulian, S.L.M Sitio, S.D.Y. Kusuma, and P. Rosyani, Aljabar Linear dan Matriks, no. 1. 2019. [14]      Davis, Philip J., Circulan Matrices: Division of Applied Mathematics Brown University New York. 1979. [15]      Ilhamsyah, Helmi, dan F. Fran, “Determinan Dan Invers Matriks Blok ," Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, vol. 6, no. 03. [16]      M. Redivo-Zaglia, “Pseudo-Schur complements and their properties,” Applied numerical mathematics, vol. 50, no. 3–4, hal. 511–519, 2004. [17]     T.-T. Lu dan S.-H. Shiou, “Inverses of 2× 2 block matrices,” Computers & Mathematics with Applications, vol. 43, no. 1–2, hal. 119–129, 2002.     
TRACE OF THE ADJACENCY MATRIX n×n OF THE CYCLE GRAPH TO THE POWER OF TWO TO FIVE Aryani, Fitri; Puspita, Dian Ayu; Marzuki, Corry Corazon; Muda, Yuslenita
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 2 (2022): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (548.147 KB) | DOI: 10.30598/barekengvol16iss2pp393-408

Abstract

The main aim of this research is to find the formula of the trace of adjacency matrix from a cycle graph to the power of two to five. To obtain the general form, the first step is finding the general formula of the adjacency matrix from a cycle graph to the power of two to five. Furthermore, the formula of the trace of adjacency matrix which is mentioned above obtained and proven by direct proof. We also present an implementation of the formula which is given by an example.