Claim Missing Document
Check
Articles

Found 35 Documents
Search

Pengiriman data hasil pengukuran parameter lingkungan menggunakan jaringan seluler dengan Raspberry Pi sebagai node Husen Nasrullah Armin; Isnain Gunadi; Catur Edi Widodo
Youngster Physics Journal Vol 6, No 1 (2017): Youngster Physics Journal Januari 2017
Publisher : Jurusan Fisika, Fakultas Sains dan Matematika, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1197.583 KB)

Abstract

In this research has built a data delivery system of environmental parameters from Raspberry Pi into a webserver database for monitoring temperature, humidity, and light intensity in realtime, which used two Raspberry Pi as the two sensor nodes. Data from measurement of temperature, humidity, and light intensity of the sensor node is transmitted into the webserver via the mobile network, then the data is stored in a MySQL database, then the data is displayed in the form of websites. Applications to display the information of temperature, humidity and light intensity are made in the form of web programming with PHP and HTML discussed. With the appearance of the web is expected to facilitate the users to access through related information anywhere and anytime with the terms connected to the network internet. from this study, obtained results Raspberry Pi is able to transmit the observed data well into the webserver with a minimum data transmission delay of 1 second and 12 second maximum delay for a sensor node-1 and minimum delivery delays 1 second and 13 second maximum delay for sensor node-2.Keywords : Raspberry Pi , webserver, PHP, MySQL
Simulator input-output sistem kontrol menggunakan Raspberry Pi Zainal Bachrudin; Catur Edi Widodo; Kusworo Adi
Youngster Physics Journal Vol 6, No 3 (2017): Youngster Physics Journal Juli 2017
Publisher : Jurusan Fisika, Fakultas Sains dan Matematika, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (892.233 KB)

Abstract

In this research has been made I / O simulator which is a tool to simulate input and output of a control system using Raspberry Pi. Raspberry Pi has 26 GPIO (General Purpose Input and Output) pins that can be used to control inputs and outputs on the I / O simulator. The 26 GPIO pins are divided into two main systems, is 13 GPIO pins that are odd numbered as inputs and 13 other GPIO pins which are even numbered as outputs. The Raspberry Pi GPIO pins are ordered as inputs and outputs using Python programming languages. The command is done by reading the switch as input signal input, then Raspberry Pi process the input signal and send data as output signal with LED flame on the I / O Simulator. The I / O simulator can simulate logic gates, as AND, OR, NOT, and ADD, and can run mini distillation plant.Keywords: Simulation, Input-Output, Raspberry Pi, Python
Prototype sistem pakar diagnosis penyakit diabetes Catur Edi Widodo
Youngster Physics Journal Vol 6, No 2 (2017): Youngster Physics Journal April 2017
Publisher : Jurusan Fisika, Fakultas Sains dan Matematika, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (118.633 KB)

Abstract

Every member of the community can experience a variety of diseases. The disease can be known from the symptoms it produces, but to know the exact type of disease, needed a doctor or a health professional. Since the number of doctors or health professionals is very limited and can not overcome the problems of the community at the same time, a system that has the capability of a doctor or health professional is required, which in this system contains the expertise of a physician or health professional on diseases and diseases. In this study was designed expert system using rule base (reason based reasoning) with forward chaining and backward chaining inference method that is intended to assist the community in diagnosing the disease. This disease diagnostic expert system developed has advantages in ease of access and ease of use. With the features that are owned, expert systems for the diagnosis of diseases that built can be used as a tool for disease diagnosis and can be accessed by the public to overcome the problem of limited number of doctors or health experts in helping people diagnose the disease.Keywords: disease, expert system, backward chaining, forward chaining, rule-based reasoning
Design of Automatic Bottle Filling Using Raspberry Pi Hadyan Arifianto; Kusworo Adi; Catur Edi Widodo
Journal of Physics and Its Applications Vol 1, No 1 (2018): November 2018
Publisher : Diponegoro University Semarang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jpa.v1i1.3910

Abstract

Water consumption is very high, especially in urban areas. This means a good business opportunity for small and medium enterprises. Those enterprises, therefore, require an automatic and affordable device that can fill water into bottles. Raspberry Pi is the center of the control system in designing this automatic bottle filling device. This is because Raspberry Pi comes a with GPIO pin that is used as an input-output controller. GPIO pin receives signal input from switches and sensors that are then processed using Python programming language to drive an actuator and a solenoid valve. Subsequent hardware testing includes tests for water sensor, director motor, alternating motor, and solenoid valve. It is found that the water sensor works at a voltage of 4.18 V and that The DC motor works at 13.92 V. It is also found that the DC motor moves back and forth at 34.77 V when it is moving up, and at -34.77 V, when it is moving down. Meanwhile, the solenoid valve is found to work at 224.9 V. Therefore; it’s very possible to use Raspberry Pi as the center of a control system for an automatic bottle filling device.
Pengaruh Jumlah Iterasi dan Nilai Parameter Relaksasi Terhadap Signal to Noise Ratio (SNR) pada Rekonstruksi Citra Metode SIRT (Halaman 13 s.d. 16) Choirul Anam; Catur Edi Widodo
Jurnal Fisika Indonesia Vol 17, No 51 (2013)
Publisher : Department of Physics Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (252.431 KB) | DOI: 10.22146/jfi.13746

Abstract

Kualitas citra hasil rekonstruksi metode Simultaneous Iterative Reconstruction Technique (SIRT) ditentukan oleh jumlah iterasi dan nilai parameter relaksasi (λ). Nilai λ ini biasanya diperoleh secara coba-coba. Penelitian ini bertujuan mengevaluasi pengaruh jumlah iterasi dan nilai λ terhadap nilai signal to noise ratio (SNR). Rekonstruksi menggunakan obyek fantom Shepp-Logan ukuran 50x50. Proyeksi dilakukan untuk setiap sudut 100menggunakan mode berkas paralel. Pertama ditentukan pengaruh jumlah iterasi terhadap SNR. Selanjutnya dilakukan penentuan nilai SNR untuk variasi  λ  pada jumlah iterasi tertentu. Diperoleh bahwa semakin banyak iterasi dan semakin besar nilai parameter relaksasi menghasilkan nilai SNR semakin tinggi, namun setelah iterasi dan nilai λ tertentu, nilai SNR mengalami saturasi. Citra dengan kualitas optimal (kekaburan dan stripping paling kecil), diperoleh pada iterasi antara 5 hingga 10 dan nilai parameter relaksasi antara 0,5 hingga 1.
Pengaruh Jumlah Iterasi dan Nilai Parameter Relaksasi Terhadap Signal to Noise Ratio (SNR) pada Rekonstruksi Citra Metode SIRT (Halaman 13 s.d. 16) Choirul Anam; Catur Edi Widodo
Jurnal Fisika Indonesia Vol 17, No 51 (2013)
Publisher : Department of Physics Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (252.431 KB) | DOI: 10.22146/jfi.24427

Abstract

Kualitas citra hasil rekonstruksi metode Simultaneous Iterative Reconstruction Technique (SIRT) ditentukan oleh jumlah iterasi dan nilai parameter relaksasi (λ). Nilai λ ini biasanya diperoleh secara coba-coba. Penelitian ini bertujuan mengevaluasi pengaruh jumlah iterasi dan nilai λ terhadap nilai signal to noise ratio (SNR). Rekonstruksi menggunakan obyek fantom Shepp-Logan ukuran 50x50. Proyeksi dilakukan untuk setiap sudut 100menggunakan mode berkas paralel. Pertama ditentukan pengaruh jumlah iterasi terhadap SNR. Selanjutnya dilakukan penentuan nilai SNR untuk variasi  λ  pada jumlah iterasi tertentu. Diperoleh bahwa semakin banyak iterasi dan semakin besar nilai parameter relaksasi menghasilkan nilai SNR semakin tinggi, namun setelah iterasi dan nilai λ tertentu, nilai SNR mengalami saturasi. Citra dengan kualitas optimal (kekaburan dan stripping paling kecil), diperoleh pada iterasi antara 5 hingga 10 dan nilai parameter relaksasi antara 0,5 hingga 1.
Perencanaan Strategis Sistem Informasi Pada Lembaga Amil Zakat Menggunakan Analisis SWOT Berbasis Lima Faktor Seni Perang Sun Tzu Berdasarkan Anita Cassidy Ucky Pradestha Novettralita; R. Rizal Isnanto; Catur Edi Widodo
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 5: Oktober 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.20231057222

Abstract

Lembaga Amil Zakat (LAZ) memanfaatkan strategi Sistem Informasi/Teknologi Informasi (SI/TI) untuk meningkatkan daya saing. Seni Perang Sun Tzu telah banyak digunakan dalam penelitian untuk menyusun strategi bisnis dan strategi penjualan. Sayangnya, belum ada penelitian dengan menggunakan Seni Perang Sun Tzu untuk perencanaan strategis Sistem Informasi (SI). Kontribusi penelitian adalah penyusunan analisis SWOT berbasis lima faktor Seni Perang Sun Tzu sehingga dapat menjadi dasar untuk penelitian selanjutnya. Tujuan dari penelitian ini adalah untuk mengidentifikasikan kondisi lingkungan internal bisnis dan eksternal bisnis sehingga memberikan rekomendasi strategi kunci kepada LAZ dalam domain strategi bisnis, strategi SI/TI, dan strategi infrastruktur SI/TI berdasarkan analisis SWOT berbasis lima faktor Seni Perang Sun Tzu yang disusun berdasarkan metode Anita Cassidy. Beberapa strategi kunci yang dihasilkan dari peneitian ini adalah promosi dan edukasi zakat melalui media sosial dan media daring lainnya; menyediakan teknologi untuk memudahkan masyarakat membayar zakat dengan membuat aplikasi seperti Mobile Zakat, Customer Relationship System (CRS); dan mengembangkan kemampuan dalam memanfaatkan teknologi 5G dan teknologi baru.   Abstract Amil Zakat Institution (LAZ) uses Information System/Information Technology (IS/TI) strategy to improve competitiveness. Sun Tzu's Art of War has been widely used in research to develop business strategies and sales strategies. Unfortunately, there has been no research using Sun Tzu's Art of War for Information System (IS) strategic planning. The contribution of the research is the preparation of a SWOT analysis based on the five factors of Sun Tzu's Art of War so that it can be the basis for future research. This research aims to identify the condition of the internal business and external business environment to provide key strategy recommendations to LAZ in the domains of business strategy, SI/TI strategy, and SI/TI infrastructure strategy based on SWOT analysis based on five factors Sun Tzu's Art of War compiled based on the Anita Cassidy method. Some of the key strategies obtained from this research are the promotion and education of zakat through social media and other online media; providing technology to make it easier for people to pay zakat by creating applications like Mobile Zakat application, Customer Relationship System (CRS); and developing capabilities in utilizing 5G technology and new technologies.
Shrimp and fish underwater image classification using features extraction and machine learning Setiawan, Arif; Hadiyanto, H.; Widodo, Catur Edi
Journal of Emerging Science and Engineering Vol. 2 No. 1 (2024)
Publisher : BIORE Scientia Academy

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/jese.2024.e14

Abstract

Shrimp cultivation is one type of cultivation that has a significant impact on the social status of coastal communities. Shrimp farming traditionally faces several challenges, including water pollution, imbalances in temperature, feed, media, and costs. Monitoring the condition of shrimp in the cultivation environment is very necessary to determine the condition of shrimp in the water. Classification of shrimp and fish is the first step in monitoring the condition of shrimp underwater. This research proposes the development of a method for classifying shrimp and fish underwater using feature extraction and machine learning. The flow of this research is: (1) preparing data from ROI detection results, (2) extraction process of morphometric characteristics P and T, (3) calculating the value of morphometric characteristics P and T, (4) data breakdown for training data and testing data, (5) Model creation process, data training and data testing using SVM, RF, DT, and KNN, (6) Evaluation of classification results using a confusion matrix. From this research, it was found that the Random Forest method obtained the highest accuracy, namely 0.93. From this matrix, the values ​​obtained are True Positive = 349, False Positive = 28, True Negative = 223, False Negative = 0.
Trend Analysis of The Effect of LQ45 Stocks on Stock Price Index Fluctuations using the C4.5 Algorithm with Correlation-Based Feature Selection and Information Gain Fitra Nur Asri, Muh; Edi Widodo, Catur; Sediyono, Eko
JINAV: Journal of Information and Visualization Vol. 4 No. 2 (2023)
Publisher : PT Mattawang Mediatama Solution

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/454RI.jinav1836

Abstract

The research was conducted to reveal the effect of LQ45 stock on the accuracy of stock price index fluctuations using the C4.5 algorithm with Correlation-Based Feature Selection (CFS) and Information Gain (IG) techniques. This study used the superior C4.5 algorithm using a combination feature selection technique between Correlation-based Feature Selection (CFS) and Information Gain in the hope of getting accurate results. Analysis conducted on the LQ45 index through various stages that include data collection, manual pre-processing, validation methods, process features, decision tree model result, and classification accuracy performance. The result of test revealed that the implementation of the C4.5 algorithm using correlation-based feature selection (CFS) and information gain techniques can be applied well to LQ45 stocks. The accuracy generated from the original data (without the selection feature) was 77.857%, while the addition of features to the combination of Correlation-Based Feature Selection (CFS) and Information Gain had a large influence on the results of increasing data accuracy from the accuracy of the original data by 77.857% to 78.333%. Thus, the C4.5 calculation process with the Correlation-based Feature Selection (CFS) feature selection technique alone cannot improve the accuracy level, while when combined with the Information Gain technique, the accuracy processing results will be better (higher).
Sistem Informasi Uji Forensik Proses Klasterisasi Protektil Amunisi Senjata Api Menggunakan Algoritma Gray Level Co-occurance Matrix dan K-Mean Clustering Supriyadi, Didik; Widodo, Catur Edi; Isnanto, R. Rizal
Jurnal Algoritma Vol 21 No 2 (2024): Jurnal Algoritma
Publisher : Institut Teknologi Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33364/algoritma/v.21-2.2119

Abstract

Pemanfaatan teknologi menjadi solusi saat perkembangan jaman terus meningkat dan berkembang. Tidak terkecuali keterkaitan teknologi untuk bidang keamanan negara. Metode yang mendukung klaterisasi adalah ekstraksi ciri menggunakan Gray Level Co-occurence Matrix (GLCM) yang dilakukan sebelum proses klaterisasi itu sendiri. GLCM sangat cocok digunakan untuk melakukan ekstraksi fitur atau ciri-ciri pada citra yang memiliki pola-pola khusus seperti penelitian pengenalan pola wayang. Prosedur penelitian ini merupakan alur dari flowchat untuk membangun sistem informasi untuk uji forensik proses klasterisasi proyektil amunisi senjata api menggunakan algoritma Gray Level Co-occurrene Matrices (GLCM) dan K-Means clustering. Pada Gambar 3.1 berikut merupakan kerangka sistem informasi sebagai penjelas setiap alur input, proses dan output diilustrasikan.Hasil penelitian menunjukkan bahwa penggunaan metode GLCM sebagai ekstraksi fitur dari image grayscale dan metode K-Means untuk clustering memberikan hasil dan akurasi yang cukup baik. Performa model mencapai 71.14% meski dengan keterbatasan data yang dimiliki. Model tersebut dapat digunakan tidak hanya pada aplikasi console seperti Google Collabs, tetapi juga dapat digunakan pada aplikasi yang memiliki GUI dengan performa aplikasi yang cukup stabil.