Claim Missing Document
Check
Articles

Found 31 Documents
Search

Prediksi Harga Minyak Mentah WTI Menggunakan Metode Fuzzy Time Series Markov Chain: Prediksi Harga Minyak Mentah WTI Menggunakan Metode Fuzzy Time Series Markov Chain Siti Nurlela; Aris Fanani; Hani Khaulasari
Jurnal Fourier Vol. 12 No. 1 (2023)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/fourier.2023.121.10-19

Abstract

Harga minyak mentah merupakan salah satu patokan untuk perekonomian dunia. Harga minyak mentah sering mengalami naik turun yang disebabkan oleh pendapatan dan permintaan. Kaadaan yang terjadi ini dapat diatasi dengan prediksi menggunakan metode fuzzy time series markov chain. Data harga minyak mentah WTI merupakan bentuk data time series yang diakses dari webside Id.investing. Pada penelitian ini bertujuan untuk pengambilan keputusan para investor. Metode fuzzy time series markov chain pada harga minyak mentah jenis WTI mendapatkan nilai akurasi prediksi lebih dari 98%, sedangkan nilai dari MAPE adalah 1.18%.
Classification of Cumulonimbus Cloud Formation based on Himawari Images using Convolutional Neural Network model Googlenet Mohammad Rizal Abidin; Dian candra Rini Novitasari; Hani Khaulasari; Fajar Setiawan
Jurnal Buana Informatika Vol. 14 No. 02 (2023): Jurnal Buana Informatika, Volume 14, Nomor 2, Oktober 2023
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v14i02.7417

Abstract

Cumulonimbus clouds (Cb) are dangerous for many human activities. To reduce this effect, a system to classify formations is needed. The formation of Cb clouds can be seen in the Himawari-8 IR image. This research aimed to create a Cb cloud classification system with Himawari-8 IR Enhanced imagery using the GoogleNet model CNN method. The total data used was 2026 image data. Parameter testing was carried out on the CNN GoogleNet model in this study, namely a data distribution ratio of 90:10 and 80:20. The probability of dropout is 0.6, 0.7, and 0.8. and batch sizes of 8, 16, 32, and 64. The trials conducted in this study yielded a sensitivity value of 100.00%, an accuracy of 99.00%, and a specificity of 99.60% obtained from the experimental data distribution of 90:10, probability 0.8, and batch size 8.
Determination of the Beginning of Prayer Time on the Mount Prau Hiking Trail by Applying Spherical Trigonometry Nur Aulia, Shofinatul Wahdah; Hamid, Abdulloh; Yuliati, Dian; Asyhar, Ahmad Hanif; Khaulasari, Hani
Al-Marshad: Jurnal Astronomi Islam dan Ilmu-Ilmu Berkaitan Vol 10, No 1 (2024): Al-Marshad
Publisher : University of Muhammadiyah Sumatera Utara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30596/jam.v10i1.18366

Abstract

Determining the beginning of prayer time on the Mount Prau hiking trail is very important for Muslims, especially when performing the five daily prayers. Calculation of the beginning of prayer time is important even though prayers can be performed within a certain time range. This study aims to apply spherical trigonometric calculations and to determine the results of the beginning of prayer time on the Mount Prau hiking trail. This research uses spherical trigonometry hisab method with the required data are latitude of place, longitude of place, solar declination and equation of time. The calculation results show the exact prayer time, such as dawn between 04.24 to 04.29 WIB, zuhur between 11.39 to 11.44 WIB, asar between 15.01 to 15.05 WIB, maghrib between 17.32 to 17.36 WIB and isya between 18.46 to 18.51 WIB. This information is useful for climbers of Mount Prau so that they can carry out worship on time.
Analyzing Factors Contributing to Gender Inequality in Indonesia using the Spatial Geographically Weighted Logistic Ordinal Regression Model Khaulasari, Hani; Farida, Yuniar
(IJCSAM) International Journal of Computing Science and Applied Mathematics Vol 10, No 2 (2024)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24775401.v10i2.21942

Abstract

Gender inequality is a condition of discrimination caused by social systems and structures. The main objective of this research is to identify factors that influence gender inequality in each province in Indonesia and obtain classification accuracy values using Geographically Weighted Ordinal Logistic Regression (GWOLR). The dataset used in this research consists of a response variable, namely the gender inequality index where the index value is divided into ordinal categories (low, medium, and high) and four predictor variables from the dimensions of health, education, human empowerment, social-culture, and work. The results of this study show that the classification accuracy of the GWOLR model is 85%. The mapping of provinces in Indonesia based on influential variables forms three groups. The first group (brown) is influenced by the percentage of women who give birth with the assistance of health workers (X1) and the female Human Development Index (HDI) (X3). The second group (blue) is influenced by the ratio of women’s Pure Participation Rate (APM) (X2) and the percentage of rape crimes against women (X4). The third group (red) is influenced by the percentage of women who give birth with the assistance of health workers (X1), the ratio of women’s Pure Participation Rate (APM) (X2), the percentage of women’s Human Development Index (HDI) ratio (X3), and the percentage of women’s rape crimes (X4).
Klasifikasi Sebaran Wilayah dengan Risiko Penyakit Mers di Provinsi Jawa Timur dengan Menggunakan Algortima Support Vector Machine (SVM) Wahyudi, Sharenada Norisdita; Hafiyussholeh, Moh.; Susanto, Hugeng; Khaulasari, Hani
Journal of Mathematics Education and Science Vol. 7 No. 2 (2024): Journal of Mathematics Education and Science
Publisher : Universitas Nahdlatul Ulama Sunan Giri Bojonegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32665/james.v7i2.3269

Abstract

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) ialah penyakit saluran pernapasan yang menular melalui virus corona. MERS pertama kali muncul dan terkonfirmasi pada tahun 2012 dengan gejala awal berupa demam, batuk berdahak disertai dengan sesak napas. MERS Merupakan salah satu penyakit mematikan dengan jumlah kasus lebih dari 2600 kasus terkonfirmasi dengan total 935 kematian. Penyakit ini paling banyak terkonfirmasi di Arab Saudi tepatnya di Mekkah, yang mana kota tersebut menjadi pusat terlaksananya ibadah Haji dan Umroh bagi seluruh umat muslim dunia. Jawa Timur merupakan salah satu wilayah dengan jumlah kuota jamaah haji tertinggi di Indonesia yang memiliki potensi tinggi terjadinya penyebaran penyakit MERS-Cov. Oleh karenanya perlu dilakukan suatu usaha mitigasi resiko guna memperkecil potensi terjadinya sebaran penyakit MERS di Indonesia khususnya di Jawa Timur, salah satunya ialah melakukan prediksi sebaran potensi menggunakan algoritma SVM. Hal itu dikarenakan SVM dinilai unggul dalam mengolah data non linear dengan baik karena sudah dilengkapi dengan bantuan fungsi kernel dalam kinerja algortimanya. Data yang digunakan pada penelitian ini adalah data sebaran potensi kasus MERS di Jawa Timur pada tahun 2023 yang didapatkan dari Dinas Kesehatan Provinsi Jawa Timur. Dilakukan beberapa pengujian untuk mendapatkan hasil optimal dengan menggunakan beberapa pembagian proporsi data training:testing, diantaranya 60:40, 65:35, 70:30, 75:25, 80:20, dan didapati hasil pengujian tertinggi terdapat pada proporsi data sebesar 75:25 dengan nilai akurasi 0.9 (90%).
Impact of Inflation, Interest Rates, And Money Supply on Deposit Funds Yayan Luthfi Khoirina; Yuniar Farida; Moh. Hafiyusholeh; Hani Khaulasari
Economics Development Analysis Journal Vol. 13 No. 4 (2024): Economics Development Analysis Journal
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/edaj.v13i4.13910

Abstract

Deposits are straightforward investment instruments that offer fixed interest over a specified period, serving as a profitable product for banks. They play a crucial role in supporting banking operations, particularly within the internal scope of the institution. This study aims to examine the causal relationships between deposit interest rates, inflation, and money supply on the total deposits held by banks. A Vector Error Correction Model (VECM) is employed to investigate these relationships in both the short and long term. The analysis reveals that inflation and money supply significantly influence the volume of deposits in the short term. Conversely, deposit interest rates do not exhibit a substantial short-term impact on the total funds deposited. In the long term, all independent variables—deposit interest rates, inflation, and money supply—demonstrate a considerable effect on the amount of deposited funds. These findings provide valuable insights for banks, enabling them to optimize their funding strategies through deposit products while addressing challenges posed by macroeconomic fluctuations
Forecasting Zakat Potential in BAZNAZ East Java Using the ARIMAX Method with Calendar Variation Effects Sari, Lia Puspita; Hamid, Abdulloh; Khaulasari, Hani
Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi Volume 13 Issue 2 August 2025
Publisher : Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/euler.v13i2.31456

Abstract

Zakat is a Muslim act of worship that is related to wealth and is one of the instruments used in economic development so that it can solve the problem of poverty. According to the Central Statistics AgencyZakat is an Islamic obligation related to wealth distribution and functions as a key instrument in economic development, particularly in alleviating poverty. According to the Central Statistics Agency, East Java had the highest number of poor people in Indonesia in 2023. BAZNAS (Badan Amil Zakat Nasional) plays a strategic role in managing zakat funds to support poverty reduction efforts. Accurate information on zakat potential is crucial for ensuring the effective management and distribution of zakat. This study aims to model, evaluate the accuracy, and forecast the zakat potential at BAZNAS East Java untuk Januari sampai dengan Desember 2024 using the Autoregressive Integrated Moving Average with Exogenous (ARIMAX) Variables method. ARIMAX extends the ARIMA model by incorporating exogenous variables. In this study, the exogenous variables used are a deterministic trend and a Hijri calendar dummy variable representing the month of Ramadan, The results show that the best-performing model is ARIMAX([12],1,1), with a MAPE value of 18%, indicating a reasonably accurate forecast. The zakat potential for the next 12 months is projected to remain relatively stable, with a significant increase of IDR 6,674,988,827.25 expected in April 2024. This spike coincides with the month of Ramadan, when Muslims customarily pay zakat fitrah and zakat mal.
Implementasi K-Means Clustering Melalui Pemanfaatan Sampling Kombinasi Pada Pengelompokan Pola Kesehatan Mental Mahasiswa Sains dan Teknologi Sari, Firda; Kuntari, Maharani; Yati, Winda; Khaulasari, Hani; Hafiyusholeh, Moh.
Jurnal Nasional Teknologi dan Sistem Informasi Vol 11 No 1 (2025): April 2025
Publisher : Departemen Sistem Informasi, Fakultas Teknologi Informasi, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/TEKNOSI.v11i01.2025.9-16

Abstract

Kesehatan mental merupakan aspek kesehatan penting selain kesehatan fisik. Mahasiswa merupakan individu yang berada pada usia remaja akhir sampai dewasa awal yang pada masa ini akan mengalami tekanan secara emosional karena masalah-masalah sosial, akademik, dan personal. Perlu diadakan pengecekan dini pada kesehatan mental mahasiswa seperti asesmen psikologi yang dilakukan untuk pencegahan gangguan mental yang dihadapi mahasiswa sehingga dapat mengurangi angka bunuh diri. Tujuan dari penelitian ini adalah untuk mendapatkan kelompok pola kesehatan mental mahasiswa untuk diidentifikasi pola dan tren dengan algoritma K-Means clustering dan dievaluasi dengan silhouette coefficient untuk memastikan keakuratan dan validitas dari hasil clustering. Data penelitian diperoleh dari pengisian angket mengenai kondisi kesejahteraan psikologis  dan tekanan psikologis  yang maing-masingnya terdiri dari 5 pertanyaan. Penelitian ini memperoleh hasil setelah dikelompokkan menjadi 3 cluster yaitu tertekan (C1), netral/stabil (C2), dan bahagia (C3), pada mahasiswa sistem informasi tidak ada cluster yang dominan karena di setiap cluster memiliki jumlah data yang sama, mahasiswa arsitektur dan matematika dominan mahasiswa yang memiliki kesehatan mental yang tertekan, mahasiswa biologi dominan mahasiswanya memiliki kesehatan mental yang netral. Berdasarkan 4 program studi hasil evaluasi cluster pada program studi system informasi dan matematika memiliki struktur yang lemah, sedangkan pada program studi arsitektur dan biologi memiliki struktur yang sedang.
The Effectiveness of Peaceful Education Learning Strategies for Students at Emergency Madrasas Following Natural Disasters in Sidoarjo Abd Rachman Assegaf; Hani Khaulasari; Muhammad Thohir; Amjad Ali; Ratna Pangastuti
Jurnal Pendidikan Agama Islam Vol. 22 No. 1 (2025): Jurnal Pendidikan Agama Islam
Publisher : Yogyakarta: Jurusan Pendidikan Agama Islam Fakultas Ilmu Tarbiyah dan Keguruan UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/jpai.v22i1.8369

Abstract

Purpose – This research aims to develop and evaluate learning strategies and curricula focused on risk management education for emergency schools in post-disaster areas. The goal is to support a peaceful learning process that helps students recover from trauma while improving motivation, academic performance, and disaster preparedness. Methods – This research uses the Borg & Gall Research and Development Model to find an appropriate instructional strategy for peace education in post-natural disaster school areas. Data collection was found through documentation, interviews, and observation. Field tests I, II, and III were conducted at Madrasa Ibtidaiyah (Islamic Elementary School) in Sidoarjo, which is close to the mud-flood areas of Lapindo Enterprise. Findings – The results show an improvement in test scores conducted over three cycles in class 3 ICP 1 and ICP 2. Additionally, students were enthusiastic about participating in the learning series. The research was concluded after cycle III as it was deemed effective. The strategy using disaster mitigation questions was effectively implemented in the science class (IPA) of ICP 1, contributing 56.9%, and in the religious class (akidah akhlak) of ICP 2, contributing 75.4%, enhancing student achievement, motivation, awareness, and readiness in disaster mitigation. The peaceful education strategy for disaster mitigation was more effectively applied in akidah akhlak classes. The validation criteria were sufficiently valid and proven effective for emergency madrasa students. Research implications/limitations – This studys implications have proven to be practically useful in handling post-disaster emergency education in madrasa environments in Sidoarjo through the instillation of peaceful education in the learning process of science and Islamic Religious Education. However, this study has limitations regarding the level and number of madrasas studied. Originality/value – The originality of this research is shown from the results of field findings in madrasa in Sidoarjo, with the validity value of the R&D Model Borg and Gall research method. Further research development can be done by expanding the types and levels of madrasas or schools in East Java.
Analysis of Industrial Waste Quality Control Using Generalized Variance and Hotelling’s T2 Control Diagram Methods Hamidah, Isna; Hamid, Abdulloh; Khaulasari, Hani
Enthusiastic : International Journal of Applied Statistics and Data Science Volume 5 Issue 1, April 2025
Publisher : Universitas Islam Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20885/enthusiastic.vol5.iss1.art8

Abstract

Environmental pollution is an unsettling problem for everyone and the ecosystem which can be caused by poorly managed waste originated from the final output of industrial production processed. It can negatively impact the surrounding environment if it is not handled properly. Therefore, the waste must be processed until it meets the predetermined characteristic standards before being disposed of. Among the actions that can be taken is carrying quality control. This study aims to evaluate and characterize the quality of the waste produced. The methods used were the generalized variances and Hotelling’s T2 control charts. The data used for this research was the characteristics of liquid waste from a sugar factory industry, taken from May to September 2023. The quality control results, which were obtained using the generalized Variance control chart, could be statistically controlled after eight improvements. Then, Hotelling’s T2 control chart was successfully controlled after one test. The capability index value obtained was > 1, indicating that the quality control process in liquid waste at the Pesantren Baru sugar factory is capable or controlled.