Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Mechanical Engineering Science and Technology

Synthesis and Characterization of Nitrogen-Doped Activated Carbon for Lithium Battery Anode Applications Trihutomo, Prihanto; Puspitasari, Poppy; Radja, Muhammad Bustomi; Busono, Milzam Rahmat
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 7, No 1 (2023)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um016v7i12023p020

Abstract

Nitrogen-dopped activated carbon was synthesized to see its effect on the characterization of the nitrogen surface functional groups, crystal size, and morphology of the resulting sample. Synthesis of nitrogen-doped activated carbon was carried out by varying the addition of Urea as a nitrogen doping source. Activated carbon compared its characteristics with variations in the concentration of added Urea to activated carbon, at 1:3 and 1:5. The FTIR results obtained were the presence of functional groups indicating the presence of nitrogen bonds in each sample. The crystallinity results showed that the samples were classified as crystalline and nitrogen doping influenced the size of the crystallinity of each sample. The morphology of nitrogen-doped activated carbon shows differences in the grain size of nitrogen-doped activated carbon. Crystallinity and morphology have been shown to affect battery anode performance. The more crystalline of anode material, the electrochemical properties are better. The smaller the grain size of the sample morphology, the stability of the battery cycle is to be great.    
Simulation of the Performance of Kevlar Impregnated Shear Thickening Fluid Ballistic Test Results (STF) Ballistic Test Results Prasetya, Riduwan; Andoko, Andoko; Suprayitno, Suprayitno; Wulandari, Retno; Trihutomo, Prihanto; Mishima, Kenji; Janas, Dawid
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 8, No 1 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um016v8i12024p054

Abstract

This study explores the enhancement of Kevlar fabric’s ballistic performance through impregnation with Shear Thickening Fluid (STF) for potential application in soft body armor. The experimental approach often fails to elucidate mechanical phenomena critical for the development of lightweight and high-strength body armor designs. To address this limitation, the finite element method, specifically using ANSYS/LS-DYNA R.13, was employed for a comprehensive analysis. The simulation aimed to evaluate the impact of STF on Kevlar fabric by assessing projectile velocity, force exerted by the projectile onto the fabric, displacement, stress distribution, and fabric failure mechanisms. Kevlar yarn was modeled as a shell element formed into fabric with a sine wave profile, investigating two types of STF: SiO2-PEG200 (S0) and SiO2-PEG200-B4C (S1), differing in maximum viscosities. The addition of STF resulted in increased coefficients of friction on Kevlar, with the highest values observed for the SiO2-PEG200-B4C impregnated fabric (  =0.87 and =0.82). The incorporation of the second STF type (S1) significantly reduced the projectile’s velocity from an initial 200 m/s to 153.2 m/s upon impact. Additionally, the force on the S1 fabric surged to 121,556 N, a threefold increase compared to neat Kevlar. STF's influence was further evidenced by enhanced fabric displacement and more uniform stress distribution upon ballistic impact. The fabric's thickening upon failure indicated STF's ability to enlarge the deformation area, facilitating uniform distribution of ballistic kinetic energy across the impact zone. Notably, the fabric impregnated with the second type of STF, featuring boron carbide (S1), demonstrated superior ballistic performance. This study concludes that STF-impregnated Kevlar fabric, particularly the SiO2-PEG200-B4C variant, not only surpasses the ballistic performance of neat Kevlar but also meets the criteria for NIJ Level IIIA standards, highlighting its potential as a highly effective material for advanced soft body armor designs.