p-Index From 2021 - 2026
6.187
P-Index
This Author published in this journals
All Journal Jurnal Informatika Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Prosiding KOMMIT Jupiter Jurnal Media Infotama PROSIDING CSGTEIS 2013 JSI: Jurnal Sistem Informasi (E-Journal) JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Ilmiah Kursor JUITA : Jurnal Informatika Jurnal Informatika dan Teknik Elektro Terapan JPSriwijaya JIEET (Journal of Information Engineering and Educational Technology) BAREKENG: Jurnal Ilmu Matematika dan Terapan JITK (Jurnal Ilmu Pengetahuan dan Komputer) JMM (Jurnal Masyarakat Mandiri) SELAPARANG: Jurnal Pengabdian Masyarakat Berkemajuan JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Martabe : Jurnal Pengabdian Kepada Masyarakat Jurnal ULTIMATICS IJID (International Journal on Informatics for Development) Jurdimas (Jurnal Pengabdian Kepada Masyarakat) Royal Jurnal Informatika Global Antivirus : Jurnal Ilmiah Teknik Informatika Jurnal Abdimas Mandiri Indonesian Journal of Electrical Engineering and Computer Science Reswara: Jurnal Pengabdian Kepada Masyarakat TIN: TERAPAN INFORMATIKA NUSANTARA Journal of Computer Networks, Architecture and High Performance Computing Idealis : Indonesia Journal Information System Jurnal Generic ABSYARA: Jurnal Pengabdian Pada Masyarakat Jurnal Pengembangan Sistem Informasi dan Informatika Lumbung Inovasi: Jurnal Pengabdian Kepada Masyarakat Algoritme Jurnal Mahasiswa Teknik Informatika Jurnal Teknologi Sistem Informasi Bakti Budaya: Jurnal Pengabdian kepada Masyarakat Jurnal INFOTEL Jurnal Teknik Informatika dan Teknologi Informasi
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Tree-based models and hyperparameter optimization for assessing employee performance Gustriansyah, Rendra; Puspasari, Shinta; Sanmorino, Ahmad; Suhandi, Nazori; Sartika, Dewi
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 1: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i1.pp569-577

Abstract

The Palembang city fire and rescue service (FRS) is encountering challenges in adhering to national standards for fire response time. Hence, the Palembang city FRS is committed to enhancing employee performance through quarterly performance assessments based on various criteria such as attendance, work targets, behavior, education, and performance reports. This study proposes tree-based models in machine learning (ML) and hyperparameter optimization to assess the performance of Palembang city FRS employees. Tree-based models encompass decision trees (DT), random forests (RF), and extreme gradient boosting (XGB). The predictive performance of each model was evaluated using the confusion matrix (CM), the area under the receiver operating characteristic (AUROC), and the kappa coefficient (KC). The results indicate that RF performs better than DT and XGB in the sensitivity, AUROC, and KC metrics by 1.0000, 0.9874, and 0.8584, respectively.