Claim Missing Document
Check
Articles

Perbandingan Instance Segmentation Image Pada Yolo8 Wulanningrum, Resty; Handayani, Anik Nur; Wibawa, Aji Prasetya
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 11 No 4: Agustus 2024
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.1148288

Abstract

Seorang pejalan kaki sangat rawan terhadap kecelakaan di jalan. Deteksi pejalan kaki merupakan salah satu cara untuk mengidentifikasi atau megklasifikasikan antara orang, jalan atau yang lainnya. Instance segmentation adalah salah satu proses untuk melakukan segmentasi antara orang dan jalan. Instance segmentation dan penggunaan yolov8 merupakan salah satu implementasi dalam deteksi pejalan kaki. Perbandingan segmentasi pada dataset Penn-Fundan Database menggunakan yolov8 dengan model yolov8n-seg, yolov8s-seg, yolov8m-seg, yolov8l-seg, yolov8x-seg. Penelitian ini menggunakan dataset publik pedestrian atau pejalan kaki dengan objek multi person yang diambil dari dataset Penn-Fudan Database. Dataset mempunyai 2 kelas, yaitu orang dan jalan. Hasil perbandingan penggunaan model yolov8 model segmentasi yang terbaik adalah menggunakan model yolov8l-seg. Hasil penelitian didapatkan Instance segmentation valid box pada data orang, mAP50 tertinggi pada yolov8l-seg dengan nilai 0,828 dan mAP50-95 adalah 0,723. Instance segmentation valid mask pada orang nilai mAP50 tertinggi pada yolov8l-seg dengan nilai 0,825 dan mAP50-95 adalah 0,645. Pada penelitian ini, yolov8l-seg menjadi nilai terbaik dibandingkan versi yang lain, karena berdasarkan nilai mAP tertinggi pada valid mask sebesar 0,825.   Abstract   A pedestrian is very vulnerable to road accidents. Pedestrian detection is one way to identify or classify between people, roads or others. Instance segmentation is one of the processes to segment people and roads. Instance segmentation and the use of yolov8 is one of the implementations in pedestrian detection. Comparison of segmentation on Penn-Fundan Database dataset using yolov8 with yolov8n-seg, yolov8s-seg, yolov8m-seg, yolov8l-seg, yolov8x-seg models. This research uses a public pedestrian dataset with multi-person objects taken from the Penn-Fudan Database dataset. The dataset has 2 classes, namely people and roads. The results of the comparison using the yolov8 model, the best segmentation model is using the yolov8l-seg model. The results obtained Instance segmentation valid box on people data, the highest mAP50 on yolov8l-seg with a value of 0.828 and mAP50-95 is 0.723. Instance segmentation valid mask on people the highest mAP50 value on yolov8l-seg with a value of 0.825 and mAP50-95 is 0.645. In  his study, yolov8l-seg is the best value compared to other versions, because based on the highest mAP value on the valid mask of 0.825.  
PENGEMBANGAN SISTEM PENDUKUNG KEPUTUSAN UNTUK PEMILIHAN SEKOLAH MENENGAH ATAS MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING Heru Suhartono, Wawan; Kumalasari Niswatin, Ratih; Wulanningrum, Resty
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 8 No. 5 (2024): JATI Vol. 8 No. 5
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v8i5.10898

Abstract

Pemilihan sekolah menengah atas (SMA) merupakan proses penting yang mempengaruhi pendidikan dan masa depan siswa. Di SMP XYZ, pemilihan SMA masih menggunakan data terbatas tanpa metode pembobotan sistematis, yang menyebabkan kesulitan dalam mempertimbangkan berbagai kriteria seperti nilai akademik, jalur penerimaan, dan jarak ke sekolah. Penelitian ini bertujuan untuk mengembangkan sistem pendukung keputusan berbasis web menggunakan metode Simple Additive Weighting (SAW) untuk memfasilitasi proses pemilihan SMA. Sistem ini dirancang untuk membantu siswa dan orang tua membuat keputusan yang lebih terinformasi dan objektif dengan mempertimbangkan kriteria seperti nilai akademik rata-rata, nilai terendah yang diterima, jalur akademik dan non-akademik, serta jarak ke sekolah. Metode SAW dipilih karena kemampuannya dalam memberikan peringkat objektif berdasarkan kriteria tersebut. Pengujian sistem dengan data siswa tahun 2023 menunjukkan SMA Negeri A memiliki nilai bobot tertinggi sebesar 76,22, diikuti SMA Negeri B dengan nilai 75,67. Sistem ini juga memprediksi probabilitas penerimaan siswa dengan akurasi yang baik, dan evaluasi menunjukkan kepuasan pengguna terhadap fungsionalitas dan kemudahan penggunaan. Dengan demikian, sistem ini diharapkan dapat meningkatkan transparansi dan akurasi dalam pemilihan SMA serta dapat diadaptasi untuk berbagai sekolah.
Sosialisasi dan Pelatihan Modul Data Preparation Aplikasi JIMAT di NPCI Kabupaten Kediri Wulanningrum, Resty; Bekti, Ruruh Andayani; Utomo, Wahyu Cahyo
Jurnal Pengabdian Masyarakat Nusantara Vol 4 No 1 (2024): Desember 2024
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29407/dimastara.v4i1.24393

Abstract

Pengabdian ini bertujuan untuk menyosialisasikan dan melatih modul Data Preparation Aplikasi JIMAT di NPCI Kabupaten Kediri. Dengan adanya peningkatan penggunaan teknologi informasi di berbagai sektor, diperlukan penyusunan data yang tepat dan efisien bagi atlet disabilitas yang potensial. Pelaksanaan sosialisasi dan pelatihan ada 5 tahapan, yaitu registrasi peserta, open ceremony, pemamparan materi, diskusi dan penyerahan aset, dan penutup. Hasil pengabdian semua peserta sangat antusias dan tertib dalam mengikuti acara pelatihan dan keluarga besar NPCI Kabupaten Kediri sekarang merasa senang karena mereka mempunyai sistem untuk pendataan atlet potensial.
Comparative Analysis of Yolov-8 Segmentation for Gait Performance in Individuals with Lower Limb Disabilities Wulanningrum, Resty; Handayani, Anik Nur; Herwanto, Heru Wahyu
International Journal of Robotics and Control Systems Vol 5, No 1 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i1.1731

Abstract

This research aims to develop an example of gait pattern segmentation between normal and disabled individuals. Walking is the movement of moving from one place to another, where individuals with physical limitations on the legs have different walking patterns compared to individuals without physical limitations. This study classifies gait into three categories, namely individuals with assistive devices (crutches), individuals without assistive devices, and normal individuals. The study involved 10 subjects, consisting of 2 individuals with assistive devices, 3 individuals without assistive devices, and 5 normal individuals. The research process was conducted through three main stages, namely: image database creation, data annotation, and model training and segmentation using YOLOv8. YOLOv8-seg is the platform used to segment the data. The test results showed that the YOLOv8L-seg model achieved convergence value at the 23rd epoch with the 4th scenario in recognizing the walking patterns of the three categories. However, research on walking patterns of people with disabilities faces several obstacles, such as the lack of confidence or emotion of the subject during the data collection process, which is conducted at the location of the subject's choice. In addition, YOLOv8-seg showed consistent performance across the five models used, obtaining a maximum mAP50 value of 0.995 for mAP50 box and mAP50 mask.
Ekstraksi Fitur Pada Aksara Kawi Moh Imam Yusuf Mustofa; Resty Wulanningrum; Julian Sahertian
JUKOMPSI (Jurnal Komputer dan Sistem Informasi) Vol 1 No 2 (2023): Juni
Publisher : Teknik Komputer Fakultas Teknik Universitas Islam Kadiri (UNISKA)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Kawi script is a derivative of the post-palawa language. Kawi itself in Sanskrit means poet. The Kawi script itself is found in many ancient manuscripts from ancient times. Kawi script itself nowadays is no longer used, many people don't know Kawi script. In this modern era, where everything is digital, it needs preservation, one of which is by using computers to recognize kawi script patterns. Before identifying characters, it is necessary to have digital image information, one of which is the extraction process. This research will create a feature extraction system for the kawi script which will later be used as input for the classification of the kawi script. This study uses data sourced from books and in this research, the data taken is only 6 types of data. In the process of making this system using the Matleb application. In the testing phase, the GLCM (Gray Level Co-Occurrence Matrix) feature extraction will be used which includes Contrast, Correlation, Energy, and Homogeneity, then identification will be processed. The results of this study produce values ​​from the GLCM method, namely values ​​from Contrast, Correlation, Energy, and Homogeneity. It is expected that the values ​​of the 4 features can be used as input data from the classification from in further research.
EKSTRAKSI CIRI BENTUK PADA AKSARA JAWA KAWI MENGGUNAKAN METODE L*A*B dan K-Means Clustering Achmad Iqbal Maulana; Resty Wulanningrum; Julian Sahertian
JUKOMPSI (Jurnal Komputer dan Sistem Informasi) Vol 1 No 2 (2023): Juni
Publisher : Teknik Komputer Fakultas Teknik Universitas Islam Kadiri (UNISKA)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kawi Javanese script is one of the many cultural assets belonging to Indonesia that must be preserved and protected, one of which is by introducing it with a computer-based system, namely pattern recognition. In pattern recognition, shape extraction is a process that identifies and extracts shape features in digital images which can then be used as the initial classification process. This study aims to create a form extraction system for Kawi Javanese script which can then be used to classify Kawi Javanese script images so that they can be used for the process of reading Kawi Javanese script. Data collection in this study was taken from books using Javanese Kawi script with as many as 6 characters. In making this system using Matlab R2020a. Testing is carried out by processing 6 character images using the L*A*B and K-Means Clustering methods which will produce segmentation values ​​and then take shape feature values ​​including Area, Perimeter, Metric, and Eccentricity which can then be processed using the Artificial Neural Network method for classification. It is hoped that the values ​​of these parameters can be used as input values ​​for the classification of the Kawi Javanese script.
Ekstraksi Ciri Bentuk pada Huruf Kawi Cholid Ilham Isniawan; Resty Wulanningrum; Julian Sahertian
JUKOMPSI (Jurnal Komputer dan Sistem Informasi) Vol 1 No 2 (2023): Juni
Publisher : Teknik Komputer Fakultas Teknik Universitas Islam Kadiri (UNISKA)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Javanese kawi script is basically an ancient script that appeared in the 18th to 16th centuries. Which the kawi script is also a derivative of the Pallawa script, considering the very importance of the Kawi language because previous texts mainly used the history of Hindu texts still using the Kawi language. (Surada, 2018). And to preserve the kawi language, it can be developed through a kawi identification system. For image identification, shape feature extraction is used for the identification system to find information from digital images (Herdiansah, 2022). In this study, an image identification system was created by extracting shape features to get the initial value of the shape of the Kawi letters and then going through a classification process so that they could recognize Kawi letters. There was some data collected from 2 data sources with a total of 6 data collected. In this manufacture using the matlab application (Prayoga, 2019) by conducting tests to process image data that has been obtained using shape feature extraction with metric and eccentricity parameters which are then processed using an artificial neural network method. From the results of this study it is hoped that the extraction value of shape features with these parameters can be used for the next step for classifying kawi letters.
Klasifikasi Siswa Berprestasi Pada SDN Puncu 3 Ahmad Fakhruddin Luthfi; Daniel Swanjaya; Resty Wulanningrum
JUKOMPSI (Jurnal Komputer dan Sistem Informasi) Vol 1 No 1 (2022): Desember
Publisher : Teknik Komputer Fakultas Teknik Universitas Islam Kadiri (UNISKA)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In the world of education, the increasing success and failure of students is a reflection of the world of education. Education is currently required to be able to compete with all the utilization of existing natural resources. This study aims to determine which students will be ranked in the top 5 in grade 6 semester 2 every year at SDN Puncu 3. This study uses the method of self organization maps (SOM). The data that has been obtained from the data recap of the student data values ​​uses the SOM method. The SOM method analyzed data from 75 students of SDN Puncu 3 with a silhouette coefficient value of 0.7399. Keywords: Clustering, Education, Self Organizing Map.
Integrasi Prediksi Pendapatan Pesantren Al-Fuukat Menggunakan Metode K-Means Clustering Dan Backpropagation salma - alawiyah; Daniel Swanjaya2; Resty Wulanningrum
JUKOMPSI (Jurnal Komputer dan Sistem Informasi) Vol 1 No 2 (2023): Juni
Publisher : Teknik Komputer Fakultas Teknik Universitas Islam Kadiri (UNISKA)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pesantren Al-Fukaat merupakan salah satu tempat pembibitan bibit alpokat yang berada di Desa Trayang, Kecamatan Ngronggot, Kabupaten Nganjuk Kecamatan Ngeronggot . Pesantren Al-Fukaat berdiri sejak tahun 2018. Merupakan salah satu sentra pembibitan buah alpokat yang terbesar di Kabupaten Nganjuk. Adapun varietas bibit yang dijual terdiri dari alpokat lokal dan impor. Untuk alpokat lokal mereka menjual jenis Aligator, Markus, Miki, Hass, dan Pangeran. Sedangkan untuk jenis alpokat impor seperti Cuba, Bokhong Teen, Yellow, Red Vietnam, dan Buchaneir, permasalahan yang dihadapi oleh pemilik adalah pemilik sering ragu dalam memprediksi pendapatan mereka di masa depan. Maka dari itu dibuatkanlah sebuah sistem aplikasi website yang dapat memprediksi pendaptan Pesantren Al-Fuukat dimasa depan dengan owner atau pemilik memfilter tanggal atau memilih tanggal yang diinginkan sistem ini juga memiliki validasi tanggal seperti tanggal to tidak boleh kurang dari tanggal from sebaliknya tanggal from tidak boleh melebihi tanggal to, sistem juga dapat melakukan perekapan data secara otomatis dan customer dapat memesan secara online. Sistem yang dibangun menggukan metode K-Means dan Backpropagation agar lebih flexsibel serta efiesn dalam perhitungan data. hasil akhir clustering / penge-lompkkan mulai dari cluster 1 – 3 dan berbagai macam jenis Kategori ukuran Al-fukaat. Nilai Exp juga bervarian mulai dari 0.03, 0.045 dst sesuai dengan record data pendapatan penjualan Pesantren Al-Fuukat
Comparison of C4.5 and Naive Bayes for Predicting Student Graduation Using Machine Learning Algorithms Abu Tholib; M Noer Fadli Hidayat; Supri yono; Resty Wulanningrum; Erna Daniati
International Journal of Engineering and Computer Science Applications (IJECSA) Vol. 2 No. 2 (2023): September 2023
Publisher : Universitas Bumigora Mataram-Lombok

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/ijecsa.v2i2.3364

Abstract

Student graduation is a very important element for universities because it relates to college accreditation assessment. One of them is at the Faculty of Engineering Nurul Jadid University, which has problems completing the study period within a predetermined time. So that it can be detrimental because accreditation is less than optimal, and the number of active students makes it less ideal in teaching and learning activities. This study aimed to compare the level of accuracy using the C4.5 algorithm and Naïve Bayes method in predicting graduation on time. The C4.5 and Naïve Bayes algorithms are one of the methods in the algorithm for classifying. Tests were carried out using the C4.5 and Naïve Bayes algorithms using Google Colab with Python programming language, then validated using 10-fold cross-validation. The results of this study indicate that the Naïve Bayes method has a higher accuracy value with an accuracy rate of 96.12%, while the C4.5 algorithm method is 93.82%.
Co-Authors Abu Tholib Achmad Iqbal Maulana Achmad Zainul Karim Aeri Rachmad Afizza Fikri Kurniawan Ahmad Bagus Setiawan Ahmad Fakhruddin Luthfi Aji Prasetya Wibawa Aminuyati Andrean Ferdyana Vabian Eka Sakti Anggi Nur Fadzila Anggi Wahyu Triprasetyo Anik Nur Handayani Ardi Sanjaya Arsyad, Nandito Pramudya Asmoro, Shandy Sadewa Asna Maulian Amroni Maulian Amroni Asri, Puput Puji Bagus Fadzerie Robby Cholid Ilham Isniawan Christa Witta Putra Santoso Dadi Setyawan Danar Putra Pamungkas, Danar Putra Daniel Swanjaya Daniel Swanjaya2 Desi Dwi Kurniawati Dhela Melani Winandari Dimas Eri Kurniawan Doni Abdul Fatah Donny Firdani Ella Okta Viana Ema Utami Erna Daniati Fadli Hidayat, M. Noer Fadli, Abi Ihsan Fadzerie Robby, Bagus Fatkur Rhohman, Fatkur Firmansyah, Muhammad Kukuh Frisca Ayu Fatika Sari Gadang Putro Bagus Setiyawan Heffi Awang Cahya Heru Suhartono, Wawan Heru Wahyu Herwanto Hidayah, Alvi Nurul Intan Nur Farida Iswoyo, Yodhi Pratama Jauhari, Nur Mohamad Iqbal Juli Sulaksono Julian Sahertian Krisnawan, Apreado Gilang Made Ayu Dunia Widyadara Made Ayu Dusea Widya Dara Miftachul Ludfie Millenialdo Yanuar Ilham Moh Imam Yusuf Mustofa Muhaimin, Mohammad Aqil Muhamad Yusup Efendi Muhammad Abdul Aziz Mustofa, Arin Ayu Silvyani Muttaqien, Hidayatul N.S.A, M Mukhlish Nandha Vera Wihra Lelitavistara Nandha Vera Wihra Lelitavistara, Nandha Vera Wihra Naufal Muji Dwicahyo Nugraha, Reza Setya Nur Mohamad Iqbal Jauhari Iqbal Jauhari Nurul Mahpiroh Patmi Kasih Ratih Kumalasari Niswatin Reza Mawarni Risa Helilintar Risky Aswi R, Risky Rohmat Syamsul Huda Roni Heri Irawan Rony Heri Irawan Ruruh Andayani Bekti, Ruruh Andayani salma - alawiyah Sandhi Kurniawan Sari, Lya Rosita Sinta Sanora Siregar, Muhammad Fariz Hardiansyah Siti Rochana Sri Rahayu Supri yono Teguh, Aji Triyo Kristantio Ulfatus Syaidah Wahyu Cahyo Utomo Wijayanto, Muhammad Farid Zakaria, Reza Naim