Claim Missing Document
Check
Articles

Found 13 Documents
Search

Digitalisasi Bimbingan Konseling pada Sekolah Menengah Atas Muhammad Dzulfikar Fauzi; Maulana, Rizky Fenaldo; Wicaksono, Ardian Yusuf; Hajar, Granita; Al Faroby, Mohammad Hamim Zajuli
PaKMas: Jurnal Pengabdian Kepada Masyarakat Vol 5 No 1 (2025): Mei 2025
Publisher : Yayasan Pendidikan Penelitian Pengabdian Algero

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54259/pakmas.v5i1.4100

Abstract

Guidance and Counseling (BK) has an important role in supporting the academic, social and emotional development of students in high school. However, recording and managing guidance and counseling services which are still done manually often creates obstacles, such as limitations in data retrieval, lack of privacy, and difficulties in maintaining student development on an ongoing basis. To overcome this problem, the use of digital systems in BK services is an effective solution. The BK digital system allows for more structured student data recording, faster access, as well as features such as counseling scheduling and student progress reports. This community service aims to build an application-based counseling guidance system that makes it easier to record counseling and violations committed by students. So far, counseling has been carried out by recording it in a counseling book, or if a customer commits it, it will be recorded on a violation card, which over time will fill the storage locker and it is also difficult to make mass data changes when a class changes guidance and counseling teachers. The counseling guidance application that has been created can meet the needs of guidance and counseling teachers for scheduling counseling and can see a brief description of the number of counseling activities in a particular month and can also print the results of the counseling
Sistem Pendukung Keputusan untuk Identifikasi Protein Kunci pada Kanker Darah: Integrasi MCDM, KMeans, dan Topologi Jaringan Al Faroby, Mohammad Hamim Zajuli; Fauzi, Muhammad Dzulfikar
Reputasi: Jurnal Rekayasa Perangkat Lunak Vol. 6 No. 1 (2025): Mei 2025
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/reputasi.v6i1.8959

Abstract

Kanker darah merupakan salah satu penyakit kompleks yang dipicu oleh gangguan pada regulasi jalur pensinyalan seluler, salah satunya melibatkan mutasi pada protein JAK2. Mengingat pentingnya JAK2 dalam patogenesis kanker hematologi, diperlukan pendekatan sistemik berbasis data untuk mengidentifikasi protein-protein yang memiliki asosiasi fungsional dengannya secara menyeluruh. Penelitian ini bertujuan mengembangkan sistem pendukung keputusan (SPK) untuk mengidentifikasi protein kunci dalam jaringan interaksi protein (PPI) terkait JAK2, melalui integrasi algoritma KMeans clustering, fitur topologi graf, dan metode Multi-Criteria Decision Making (MCDM). Data PPI diperoleh dari STRING-DB dan divisualisasikan menggunakan Cytoscape. Delapan fitur topologi jaringan diekstraksi sebagai dasar analisis, di antaranya degree, stress, dan neighborhood connectivity. Proses klasterisasi menghasilkan tiga kelompok optimal yang divalidasi menggunakan Silhouette Score dan Davies-Bouldin Index. Selanjutnya, model MCDM diterapkan untuk mengevaluasi kontribusi masing-masing klaster secara agregat terhadap kestabilan jaringan. Hasil penelitian menunjukkan bahwa Cluster 2 memiliki skor MCDM tertinggi (0,6667), ditopang oleh nilai stress dan degree yang sangat tinggi, mengindikasikan peran strategis protein dalam klaster tersebut sebagai hub utama dalam jaringan. Temuan ini memberikan landasan kuat untuk eksplorasi kandidat target terapi baru yang potensial dalam konteks kanker darah, serta menegaskan efektivitas integrasi teknik analisis graf dan SPK berbasis MCDM dalam studi jaringan molekuler.
Analisis Sentimen Ulasan Pengguna pada Aplikasi Cryptocurrency: Evaluasi Dampak Skenario Pembagian Dataset Menggunakan Multinomial Naive Bayes Ramaputra, Chrisdion Andrew; Al Faroby, Mohammad Hamim Zajuli; Lidiawaty, Berlian Rahmy
The Indonesian Journal of Computer Science Vol. 13 No. 4 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i4.4263

Abstract

The surge in cryptocurrency investors in Indonesia, reaching 18.83 million by January 2024, signifies an expanding interest in this market. This research conducts a sentiment analysis of user reviews on Indodax and Tokocrypto, the premier cryptocurrency trading platforms in Indonesia. Utilizing the Multinomial Naive Bayes method, the study examines the influence of various dataset split scenarios and random states on the model's performance. The findings reveal substantial variability in the model's accuracy based on different random states and test sizes. Notably, the Positive sentiment label consistently shows high-performance metrics, while the Neutral label underperforms. These insights are invaluable for developers aiming to improve user experience and for investors seeking to make informed decisions. This research underscores the significance of sentiment analysis in understanding user interactions and enhancing the credibility of cryptocurrency investment platforms.