Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Sinergi

CONDENSOR DESIGN ANALYSIS WITH KAYS AND LONDON SURFACE DIMENSIONS Dedik Romahadi; Nanang Ruhyat; L. B. Desti Dorion
SINERGI Vol 24, No 2 (2020)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4120.839 KB) | DOI: 10.22441/sinergi.2020.2.001

Abstract

The use of condensers in air conditioning units is more common in large-capacity units than in ones with a smaller capacity. Air conditioning provides comfort and freshness to an air-conditioned room. It should be noted that each room has a different heat load, which affects the specifications of the condenser used. The accuracy with which appropriate condenser specifications are determined affects the performance of the air conditioner. Thus, considering how important condenser needs are, it is necessary to design condensers with optimal performance, which adhere to proven standards. To achieve this, the design of a condenser should be based on the results of the smallest condenser dimensions of three types of surfaces, as they are intended for a limited place. This condenser design uses the standard dimensions of the Kays and London charts. Data is collected by measuring the results of temperature and enthalpy of a refrigerant at desuperheating and condensation, inlet air temperature, outlet air temperature, refrigerant mass flow rate, and air mass flow rate. The results of the compact condenser design are based on existing data, which is obtained from the smallest design results. The result uses the type of Surface CF-8.72(c) with a heat transfer area of 0.259 m2, a total tube length of 9.5 m, crossing tube length 0.594 m and a pressure drop of 3778 Pascal (Pa) on the side of a tube. This design fulfills the stipulated requirements, as the pressure drop is less than the specified maximum limit in most units.
PENGARUH VARIASI DIAMETER TUBE PIPA EVAPORATOR DENGAN CIRCULAR FINS TERHADAP PRESSURE DROPS ALIRAN REFRIGERANT PADA SISTEM REFRIGERASI Nanang Ruhyat; Rahmat Wahyudi
SINERGI Vol 19, No 1 (2015)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (813.491 KB) | DOI: 10.22441/sinergi.2015.1.009

Abstract

Kebutuhan akan mesin pendingin udara di Indonesia sangat tinggi karena iklim tropis yang menyebabkan Indonesia memiliki dua musim, yaitu musin kemarau dan musin penghujan. Namun pada beberapa tahun ini, musim kemarau atau secara awam dikatakan musim panas, terasa lebih panjang dibanding musim hujan. Sistem refrigerasi dipilih untuk kebutuhan pendingin udara di Indonesia khususnya dan asia pada umumnya. Sistem refrigrasi terdiri dari evaporator, condenser, kompresser dan katup ekspansi. Efek pendinginan terjadi di evaporator, dimana cairan refrigerant berubah menjadi uap atau yang disebut dengan proses evaporasi. Pada penelitian ini, evaporator dirancang menggunakan beberapa diameter tube  pipa evaporator, yaitu :  0,005435 m, 0,007036 m, 0,008103 m,  0,008407 m, 0,009398 m, 0,010338 m, 0,011278 m, 0,00125 m, 0,012954 m dan 0,014224 m. Perancangan evaporator untuk biaya perancangan yang optimum dipilih pada rancangan dengan Din 0,009398 m dan Dout 0,0127 dengan panjang tube 5,08 m karena ukuran dan panjang tube yang tidak terlalu besar dan panjang.
ANALISA PERBANDINGAN MECHANICAL DAN ELECTRICAL PROPERTIES TERHADAP PENAMBAHAN JUMLAH KANDUNGAN OKSIGEN PADA BATANG TEMBAGA DIAMETER 8MM Nanang Ruhyat; Agung Pramu Aji
SINERGI Vol 17, No 3 (2013)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (587.257 KB)

Abstract

Kandungan oksigen sangatlah berpengaruh terhadap mekanikal dan electrical properties pada batang tembaga. Pengujian terhadap 4 (tiga) sample yang mempunyai kandungan oksigen yang berbeda memberikan hasil beberapa sifat  mekanikal dan  elektrikal yang berbeda, di  antaranya sample  1  dengan  kandungan  oksigen  169.2  ppm  mempunyai tensile  strength    22.26  kg/mm2, regangan (elongation) 43.40%, modulus young 51.22kg/mm2, electrical conductivity 102.6%IACS, resistivity at 20°C 1.6796 µΩ.cm, sample 2 dengan kandungan oksigen 317.16 ppm mempunyai tensile strength 22.70 kg/mm2, regangan (elongation) 41.80%, modulus young 54.49 kg/mm2, electrical conductivity 101.80%IACS, resistivity at 20°C 1.6935 µΩ.cm, sample 3 dengan kandungan oksigen 387.18 ppm  mempunyai tensile strength 23.42 kg/mm2, regangan (elongation) 40.50%, modulus young 57.81 kg/mm2, electrical conductivity 101.60%IACS, resistivity at 20°C 1.6954 µΩ.cm, sample 4 dengan kandungan oksigen 465.66 ppm mempunyai tensile strength 23.98 kg/mm2, regangan (elongation) 38.13%, modulus young 62.90 kg/mm2, electrical conductivity 101.13%IACS, resistivity at 20°C 1.7047 µΩ.cm.