Claim Missing Document
Check
Articles

Found 13 Documents
Search

ESP32-Based Real-Time Blood Typing Detection for Emergency and Rural Use Stephanus, Alphin; Tansiana Mbitu, Elisabeth; Gazali Suatkab, Syukri; Daus Salamoni, Thenny
International Journal of Science, Technology & Management Vol. 6 No. 4 (2025): July 2025
Publisher : Publisher Cv. Inara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46729/ijstm.v6i4.1340

Abstract

Accurate blood group identification is essential in emergency medical care, especially in rural or remote areas with limited access to laboratory facilities. This paper presents the design and development of a low-cost, real-time blood typing detection device focused on the ABO blood group system. The device utilizes an ESP32 microcontroller to process optical input signals based on agglutination reactions between blood samples and antisera. Measurement results are displayed directly on an LCD screen, providing immediate and easy-to-read feedback without the need for internet connectivity or external devices. The system is compact, portable, and user-friendly, making it ideal for use in field operations, mobile clinics, or basic healthcare units. Initial testing shows the device is capable of accurately determining blood types A, B, AB, and O in real-time, supporting rapid decision-making in critical situations.
RANCANG BANGUN PROTOTIPE ALAT MONITORING TEGANGAN, ARUS, DAYA, DAN SUHU PADA TRANSFORMATOR DISTRIBUSI DENGAN BERBASIS INTERNET OF THINGS (IOT) Siti Fatmalia Tuanany; Mbitu, Elisabeth Tansiana; Jamlaay, Marselin
JURNAL SIMETRIK Vol 14 No 1 (2024)
Publisher : Pusat Penelitian dan Pengabdian Kepada Masyarakat (P3M) Politeknik Negeri Ambon

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31959/js.v14i1.1822

Abstract

Transformator memiliki peran yang sangat penting dalam penyaluran energi listrik hal ini dikarenakan transformator berfungsi untuk menaikkan dan menurunkan tegangan. Oleh karena itu perlu dilakukan pemeliharaan berupa pemantauan dan pengukuran pada transformator distribusi hal ini dilakukan untuk menjaga kinerja transformator. Namun, pada kondisi tertentu gangguan pada transformator terlambat untuk dideteksi dikarenakan posisi transformator kadang sulit dijangkau. Berdasarkan keterbatasan tersebut maka diperlukan adanya monitoring pada transformator dari jarak jauh untuk meningkatkan efisiensi serta dapat mengetahui kondisi transformator secara real-time. Tujuan dari penelitian ini untuk merancang dan membangun sebuah prototipe alat yang dapat memonitoring tegangan, arus, daya , dan suhu pada transformator distribusi secara real-time dengan memanfaatkan IOT. Metode penelitian ini adalah metode eksperimental dengan tahapan penelitian yaitu studi literatur dan observasi, perancangan prototipe, pengumpulan alat dan bahan, pembuatan alat dan program, dan pengujian prototipe. Prototipe alat monitoring juga dilengkapi dengan sensor suhu yang akan memberikan notifikasi bahaya apabila suhu melebihi 400C. Nilai pembacaan alat monitoring akan ditampilkan pada LCD alat dan aplikasi Blynk pada smartphone. Hasil pengujian menunjukan bahwa prototipe alat monitoring yang dibuat dapat bekerja dengan baik. Perbandingan dengan alat ukur digital memperlihatkan nilai perbedaan pengukuran tegangan sebesar 0.02%,  pengukuran arus sebesar 0.04% dan pengukuran daya yaitu 0.03%.
Enhancing Short-Term Price Prediction of TON-IRT Using LSTM Neural Networks: A Machine Learning Approach in Blockchain Trading Analytics Stephanus, Alphin; Mbitu, Elisabeth Tansiana
Journal of Digital Market and Digital Currency Vol. 2 No. 4 (2025): Regular Issue December 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jdmdc.v2i4.43

Abstract

This study explores the application of Long Short-Term Memory (LSTM) neural networks for predicting short-term price movements of the TON-IRT trading pair in the cryptocurrency market. Given the high volatility and complexity of cryptocurrency prices, traditional models like Linear Regression and ARIMA often fail to capture the underlying non-linear and temporal dependencies. To address this, we implemented an LSTM model, a type of recurrent neural network specifically designed for sequential data. The model was trained on historical hourly data, utilizing various technical indicators and lagged features to improve prediction accuracy. Our results demonstrated that the LSTM model significantly outperformed traditional methods, achieving a Mean Absolute Error (MAE) of 0.0274, a Root Mean Squared Error (RMSE) of 0.0321, and an R-squared (R²) value of 0.8743, which indicated that the model captured over 87% of the variance in the actual price data. Visual analysis of predicted versus actual prices revealed a strong alignment, though some lag in predictions during high-volatility periods was observed. The model also showed a tendency to underestimate price peaks, highlighting areas for further refinement. This study contributes to the field of blockchain trading analytics by demonstrating the effectiveness of LSTM models in addressing the unique challenges of cryptocurrency price prediction. Practical implications for traders and investors include the ability to enhance trading strategies, optimize entry and exit points, and improve risk management. Future research could integrate additional external factors, such as market sentiment and news events, or explore advanced architectures like Transformer models. By doing so, the predictive capabilities of LSTM models in volatile markets like cryptocurrency could be further refined, leading to more robust and accurate forecasting tools for financial decision-making.