Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Scientific Journal of Informatics

Estimation Model of Nutritional Content Based on Broiler Feed Images Using Convolutional Neural Network and Random Forest Mufti, Abdul; Sitanggang, Imas Sukaesih; Neyman, Shelvie Nidya; Abdullah, Luki
Scientific Journal of Informatics Vol. 12 No. 3: August 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v12i3.28682

Abstract

Purpose: This research aims to develop an intelligent model to estimate the nutritional content of broiler chicken feed based on feed images to assist farmers in selecting the best broiler feed and quickly verifying its quality to meet requirements. Methods: The methodology of this research includes literature study, data collection, data preprocessing, image classification, model evaluation, integration of CNN and random forest models, and estimation of nutritional content based on feed images. We collected 99 samples of broiler chicken feed from online stores in various regions of Indonesia, particularly Java. Next, we took pictures with a smartphone and analyzed the nutritional content using near-infrared spectroscopy. Preprocess the data by enhancing the dataset (color space and data augmentation). We use Convolutional Neural Network (CNN) for the classification of broiler feed images. The performance of the CNN model is evaluated using a confusion matrix. We integrate CNN and Random Forest Regressor (RFR) to estimate nutritional content from the features of broiler feed images. Result: The performance evaluation shows that the CNN (VGG-16) model is 0.9744% accurate and the RFR model has the highest R2 value of 0.8018. The benefits of this research include faster, more efficient, and automated feed quality measurement compared to traditional methods; maintaining feed quality standards; and avoiding health risks for livestock. Novelty: This research introduces an intelligent model to estimates the nutritional content of broiler feed images by integrating a CNN model with an RFR.
Co-Authors -, Rachmawati Abdul Rahman Saleh Abdul Wakhid Aditia Yudhistira Agus Buono Agus Mulyana Agus Purwito Ahmad Khusaeri Albar, Israr Alusyanti Primawati Anak Agung Istri Sri Wiadnyani Andi Nurkholis Andita Wahyuningtyas Anna Qahhariana Annisa Annisa Annisa Annisa Annisa Awal, Elsa Elvira Aziz Kustiyo Baba Barus Badollahi Mustafa Boedi Tjahjono Bramdito, Vandam Caesariadi Despry Nur Annisa Ahmad, Despry Nur Annisa DEWI APRI ASTUTI Dhani Sulistiyo Wibowo Dini Hayati Eddy Prasetyo Nugroho Fakhri Sukma Afina Febriyanti Bifakhlina Firman Ardiansyah Hardhienata, Medria Kusuma Dewi Hari Agung Adrianto Hasibuan, Lailan Sahrina Hendra Rahmawan Hendra Rahmawan Herawan, Yoga Heru Sukoco HUSNUL KHOTIMAH I Nengah Surati Jaya Ikhsan kurniawan Irman Hermadi Ivan Maulana Putra Khairani Krisnanto, Ferdian Kurnianto, Andi Lailan Syaufina Lilis Syarifah Luki Abdullah Medria Kusuma Dewi Hardhienata Miftah Farid mufti, abdul Muhammad Abrar Istiadi Muhammad Asyhar Agmalaro Muhammad Murtadha Ramadhan Nalar Istiqomah Nia Kurniati Peggy Antonette Soplantila Pudji Muljono Purwanti , Endang Yuni Purwanti, Endang Yuni Putra, Fiqhri Mulianda Raden Fityan Hakim Raharja, Aditya Cipta Ramadhan, Jeri Rd. Zainal Frihadian Ridwan Raafi'udin Rina Trisminingsih Risa Intan Komaraasih Rizki, Yoze Safrudin, Muhammad Safrul Sakti, Harry Hardian Santoso, Angga Bayu Satyawan, Verda Emmelinda Shelvie Nidya Neyman Sobir Sobir Sonita Veronica Br Barus Sonita Veronica Br Barus Sony Hartono Wijaya Suci Indrawati Irwan Sulistyo Basuki Suradiradja, Kahfi Heryandi Suria Darma Tarigan Syarifah Aini Taihuttu, Helda Yunita Taufik Djatna Taufik Hidayat Tenda, Edwin Tiurma Lumban Gaol Toto Haryanto Trisminingsih, Rina Unik, Mitra Wa Ode Rahma Agus Udaya Manarfa Wattimena, Emanuella M C Wisnu Ananta Kusuma Wulandari WULANDARI Yenni Puspitasari Yoanda, Sely Zuliar Efendi