Claim Missing Document
Check
Articles

Found 36 Documents
Search

Kuat Tekan Dan Kuat Lentur Beton Gepolimer Fly Ash Bottom Ash (Faba) Hybrid Variasi Extra Water/Faba Amsal Anwary; Monita Olivia; Iskandar Romey Sitompul
Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains Vol 7 (2020): Edisi 2 Juli s/d Desember 2020
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Geopolymers are an alternative cement replacement, made from industrial waste that is rich in silica and alumina, such as fly ash bottom ash. The geopolymerisation bond can beactivated by the activator solution and the curing system at high temperatures. This study utilizes fly ash bottom ash as a geopolymer material and uses an innovative ambient curingease application in the field with additional PCC. This study aims to study the compressive strength and flexural strength of hybrid geopolymer concrete after 28 days of curing with variations of extra water/FABA 0.20 and 0.23. The test results show that the compressivestrength of the extra water/FABA variation of 0.23 has the highest strength value of 15,56 MPa. While the compressive strength of the extra wate /FABA variation of 0.20 has acompressive strength value of 14,62 MPa. The flexural strength value of the extra water/FABA variation of 0,23 has the highest value of 3,08 MPa. While the flexural strength value of the hybrid geopolymer concrete variation of extra water/FABA 0,20 is 2,81 MPa.Keywords : hybrid geopolymer concrete, fly ash bottom ash, PCC, extra water/FABA.
Perbandingan Sistem Struktur Dan Biaya Pelat Lantai Metode Precast Half Slab Dan Metode Konvensional Mochamad Romi; Iskandar Romey Sitompul; Rian Tri Komara Iriana
Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains Vol 3, No 2 (2016): Wisuda Oktober Tahun 2016
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The increase in construction of building need a more efficient of slab construction method. The conventional formwork is considered uneconomical because expensive cost of materialsand labor, longer construction time, and producing significant amount waste of wooden formwork. Currently, green construction have been implemented in building projects such ashalf slab. Half slab method is divided into concrete precast and in-situ concrete works. This research aims to analyze the comparison of precast half slab and conventional method aboutstructural system and cost of construction. A computer program called Safe12 used to define precast half slab and conventional slab model. Safe12 output analysis used to calculatebending moment and shear strength. The cost estimated is according to works volume and the unit price analysis. Based on the analysis results, it observed that bending moment strengthfor precast half slab 28.532 KNm and conventional slab 25.181 KNm, and both method have equally shear strength 84.246 KN. The cost of construction for precast half slab Rp.5,712,441,933.442 and conventional slab Rp. 7,241,288,801.897. The indicates that structural system for both method have similar strength in construction, and cost of construction for precast half slab is more efficient 21,113% than conventional slab cost.Keywords: precast half slab, conventional slab, construction, Safe12
Perancangan Mortar Geopolimer Abu Sekam Januar Fitri; Monita Olivia; Iskandar Romey S
Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains Vol 3, No 2 (2016): Wisuda Oktober Tahun 2016
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study present about geopolymer mortar with rice husk ash (RHA) as binder. Both material are used their silica element were activated by alkaline solution. Alkaline solution was prepared by combining sodium silicate and sodium hydroxide of 18 M. Compressive strength of geopolymer mortar that was studied based variation of modulus activator, dosage activator, curing time, and curing temperature. Research showed that optimum mix proportion of geopolymer mortar with Rice Husk Ash (RHA) which result the optimum compressive strength. The ratio of sodium silicate solution to sodium hydroxide solution by mass was 2.5:1. The mass ratio of alkaline solution to blended ashes was 9:10. Test specimens 5×5×5 cm cube were prepared and cured at room temperature (28ºC) for 3 days and heat-cured at 70ºC for 24 hours. The speciemens were cured at room temperature for 7 days until testing date. Result from this research represents compressive strength the mortar as according to variation molar of sodium hydroxide and used a little addition of water.Keywords: Rice Husk Ash, Geopolymer, Alkali Activator, dosage activator.
Evaluasi Potensi Jaringan Saraf Tiruan Dalam Memprediksi Respons Struktur Gedung Bertingkat Berdasarkan Spektra Gempa Di Wilayah Indonesia Vindy Salim; Reni Suryanita; Iskandar Romey Sitompul
Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains Vol 3, No 1 (2016): Wisuda Februari Tahun 2016
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Design of quake resistance building is very important in Indonesia, where most of Indonesia’s region located in quake zone with low to high intensity. Analysis of structure response can be done by using the help of finite element software, but needs time and iscomplicated when designing takes place. One of the solution in analyzing structure response faster and easy to operate is with using Artificial Neural Network (ANN). Deciding transferfunction in ANN analysis is important as it can ease our ANN analysis based on displacement, velocity, and acceleration as input data. This research is intended to evaluate structureresponse based on variation of quake load based on location of Indonesia’ capital of province, which are 34 provinces. With the help of finite element software analysis, total dataobtained for JST is 1836 data. In this research, the composition used for training, testing, and validation for whole data is 60%, 20%, and 20% respectively. Input parameters arequake data, soil type, and elevation, meanwhile for output is structure response for each direction. Testing result showed that the accuracy of ANN in predicting structure responsereach 99%. Evaluation result of ANN analysis showed that transfer function of Tan-Sigmoid and Purelin gives good prediction with Tan-Sigmoid as the best one with 99% accuracy.ANN analysis result showed that irregular buildings have 99% accuracy for training and testing, meanwhile regular buildings has about 90% for training and testing. This showedthat ANN with function transfer Tan-Sigmoid can be used for predicting structure response fast and accurately, as well can be used as reference for designer in designing quake resistance building.Key Words: Artificial Neural Network, structure response value, finite element software, response spectrum, Tan-Sigmoid
Perbandingan Analsa Kapasitas Sambungan Balok - Kolom Konvensional Dan Pracetak Sistem U-Shell (Studi Kasus Gedung A Rumah Sakit Pendidikan Universitas Riau) Nasrullah Nasrullah; Zulfikar Djauhari; Iskandar Romey Sitompul
Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains Vol 1, No 1 (2014): Wisuda Februari Tahun 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Precast concrete construction have a lot of excellence compared to conventional system. this system excellence, for example well guaranted quality, produce quickly and mass, development which quickly, natty and environmental friendliness with good product quality. Precast system which have been proven by its excellence is certifiable and become solution to replace conventional system. That is seen to the number of building in Pekanbaru used precast system. One other newest is building University of Riau Educational Hospital. This hospital use precast concrete type U-Shell. The part that becoming attention from precast system is beam- column connections. Beam-column connections represent very important part in transferring forces precast element jointed. When is not planned better hence the connection can collapse of precast structure, so that can alter hierarchy which wish reached structure. This research have compared to momen and shear capacities between conventional beam- column connection and precast U-Shell. The result that obtained is difference of maximum confined concrete stress at corner connection (A), eksterior (B) and the interior (C) that is equal to 49,98 Mpa, 50,41 Mpa and 51,31 Mpa. Total of confined moment capacities is equal to A = 587,38 kN.m, B = 632,83 kN.m and C = 745,60 kN.m. The difference of maximum concrete stress and moment capacities of connection resulted from difference of configuraton of longitudinal steel and difference number of beam that connecting A, B And C that is 2, 3 and 4 of beams. Keywords : precast, u-shell, conventional, confined, connection
Perbandingan Kapasitas Sambungan Balok Kolom Sistem Konvensional Dengan Sistem Pracetak Yang Menggunakan Dywidag Ductile Connector (DDC) Rachmat Hidayat; Zulfikar Djauhari; Iskandar Romey Sitompul
Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains Vol 1, No 2 (2014): Wisuda Oktober Tahun 2014
Publisher : Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Beam - column Joint is a critical part on a reinforced concrete frame structure which is designed specifically for inelastic deformating when obtain a strong earthquake . Beam - column Joint will get horizontal and vertical shear forces as a moment result from the column above and below it and moments of the beams when carry the load of the earthquake. Beam-column joint is a very important part when transfer forces between precast elements which are connected. Beam - column joint area should be planned well in order to avoid changes the force flow precast structure which result the collapse of the hierarchy which are achieved in the structure . when the system of structure is changed from conventional to precast, it should be needed a good analyze to get an accuracy capacity in the critical region structural elements . In this study is obtained a moment and shear capacity of the structure which is put on any type of soil between conventional beam-column connection and a precast use Dywidag Ductile Connector. The result show that there are a differences between two types of connections in moment and shear capacity what are placed in difference soil conditions . The greatest of moments capacity is in the conventional beam column connection, that is SE = 271.25kNm, SD = 222.40 kNm , SC = 199.35 kNm, SB = 162.20 kNm, SA = 162.20 KNm. While The greatest of shear capacity is in the precast beam column connection, that is SE = 1318.21 kN , SD = 1019.80 kN , SC = 1019.80 kN, SB = 878.80 kN, SA = 679.87 kN. it is caused of type of method in calculating for the capacity of conventional systems and precast connector with ductile connector type.Keyword : Precast, Conventional, Ductile Connector, Beam – Column Connection
Analisis Numerik Sifat Mekanik Balok Baja dengan Penambahan Pengaku (Stiffener) Nila Kamelia; Iskandar Romey Sitompul; Reni Suryanita
Siklus : Jurnal Teknik Sipil Vol. 7 No. 1 (2021)
Publisher : Program Studi Teknik Sipil Fakultas Teknik Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/siklus.v7i1.5226

Abstract

Penggunaan baja sebagai material untuk pekerjaan konstruksi terus meningkat. Pada umumnya perencana struktur mengganti profil jika beban melebihi kapasitas daya dukungnya. Namun untuk mengganti profil yang lebih besar memakan biaya yang lebih besar. Oleh karena itu dilakukan penelitian dan analisis penggunaan pengaku (stiffener) pada balok baja agar mampu menahan beban yang ada tanpa harus mengganti ukuran profil. Tujuan dari penelitian ini adalah untuk menganalisis pengaruh yang terjadi pada balok baja dengan penambahan stiffener. Penelitian dilakukan dengan analisis Finite Element LUSAS V18. Model profil yang digunakan adalah IWF 150x75x5x7. Analisis menunjukkan bahwa dengan pembebanan sebesar 55 kN, balok tanpa stiffener memiliki lendutan 10,55 mm. Balok dengan satu stiffener pada ½ bentang memiliki lendutan sebesar 9,07 mm dan balok dengan tiga stiffener pada ¼, ½ dan ¾ bentang memiliki lendutan 9,06 mm. Kekakuan balok baja dengan penambahan stiffener mengalami peningkatan. Nilai kekakuan balok baja tanpa stiffener 5,620 kN/mm, balok baja satu stiffener 6,21 kN/mm dan balok baja tiga stiffener 6,22 kN/mm. Berdasarkan hasil eksperimen dan analisis didapatkan bahwa penggunaan stiffener pada balok baja mampu mengurangi lendutan dan membuat balok menjadi lebih kaku.
Perancangan Struktur Gedung Rangka Baja Tahan Gempa yang Terintegrasi dengan BIM (Building Information Modeling) Ronaldi Zulkifli; Iskandar Romey Sitompul; Alex Kurniawandy
Jurnal Teknik Sipil Institut Teknologi Padang Vol 9 No 1 (2022): Jurnal Teknik Sipil Institut Teknologi Padang
Publisher : ITP Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (967.788 KB) | DOI: 10.21063/jts.2022.V901.03

Abstract

Era industri 4.0 memiliki pengaruh dalam dunia jasa konstruksi dalam hal perancangan bangunan yang membutuhkan integrasi Architect, Engineering and Construction (AEC). Dengan menggunakan software yang terintegrasi dengan BIM akan memudahkan dan mempersingkat waktu dalam mendesain suatu struktur serta dapat mengurangi kesalahan akibat human error. Suatu struktur dirancang sedemikian rupa sehingga dapat memenuhi persyaratan keamanan dari bahaya gempa. Penelitian ini menggunakan software Tekla Structural Designer yang terintegrasi dengan BIM dan SAP2000. Beban gempa yang digunakan dalam penelitian ini didasarkan pada peta gempa tahun 2010 dan peta gempa tahun 2017. Nilai respon spektrum pada peta gempa 2010 adalah Ss dan S1 sebesar 0,441 dan 0,274. Sedangkan nilai respon spektrum peta gempa 2017 adalah Ss dan S1 sebesar 0,299 dan 0,236. Pengaruh beban gempa pada struktur bangunan rangka baja mencakup perpindahan, simpangan antar lantai, dan gaya dalam pada struktur. Metode yang digunakan dalam penelitian ini adalah Direct Analysis Method (DAM). Pada penelitian ini dimodelkan struktur rangka baja 5 lantai dengan panjang bentang arah X 20 m dan arah Y 16 m, tinggi antar lantai 4 m dengan tinggi total 20 m. Profil yang digunakan dalam pemodelan ini adalah profil kolom 356.376.17,9.17,9 dan balok 229.210.14,5.23.7. Hasil analisis momen maksimum pada elemen balok yang dipengaruh gempa 2010 adalah sebesar 82,953 kNm. Sedangkan momen maksimum elemen balok yang dipengaruhi gempa tahun 2017 adalah 82,922 kNm. Elemen kolom menunjukkan aksial maksimum yang dipengaruhi gempa 2010, yaitu 1371,73 kN. Sedangkan gaya aksial maksimum yang dipengaruhi gempa 2017 sebesar 1370,25 kN. Berdasarkan hasil analisis gaya dalam yang dipengaruhi oleh gempa 2010 lebih besar 5,55% dari gempa 2017. Hal ini dikarenakan nilai spektrum respon pada peta gempa tahun 2010 lebih besar dari pada peta gempa tahun 2017 berdasarkan Ss sebesar 14,2% dan S1 sebesar 3,8%.
Analisis Numerik Kuat Lentur Balok Support Beam Curve Tile Beton Semi Pracetak Dengan Variasi Panjang Bentangan Yoga Ornando; Ismeddiyanto Ismeddiyanto; Iskandar Romey Sitompul
Sainstek (e-Journal) Vol. 8 No. 2 (2020)
Publisher : Sekolah Tinggi Teknologi Pekanbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Semi precast slab is a combination of precast concrete which consist of the support beam and curve tile with the cast in place concrete. During the working process, support beam will support the entire load until the slab becomes solid. The study aims to identify the effect of using variations of support beam length towards deflection-load relationship, moment-curvature, crack pattern and cross-sectional dimensions caused by pure bending moments with the same maximum load. The variations of the support beam length are L = 3000 mm, L = 4000 mm, L = 5000 mm and L = 6000 mm which can affect the cross-sectional dimensions of the support beam. The method used in this study was the numerical method by using Abaqus 6.14 CAE software. Abaqus is one of the finite element analysis (FEA) programs to model and analysis the elements of the structure. The loading applied was an axial load which has increased until the support beam failed. The numerical analysis results are the increase of cross section dimension as the increasing of support beam length. The cross-sectional dimension are 100 mm x 60 mm; 110 mm x 65 mm; 110 mm x 70 mm; and 115 mm x 75 mm. The maximum load (Pmaks) was relative same while the support beam length increased are 1,52 kN; 1,53 kN; 1,53 kN and 1,55 kN. The collapse pattern on the support beam was a pure bending crack at the most significant bending moment region. The crack pattern showed the crack on the pull side of the beam in the direction of the stirrups.
The Effect of Portland Cement on Fly Ash Bottom Ash Geopolymer Hybrid Concrete Exposed to Peat Water Environment Monita Olivia; Rudy Satriya Pratama; Ferisma Ratu Giri; Iskandar Romey Sitompul; Alfian Kamaldi; Gunawan Wibisono; Edy Saputra
Journal of Applied Materials and Technology Vol. 3 No. 2 (2022): March 2022
Publisher : AMTS and Faculty of Engineering - Universitas Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31258/Jamt.3.2.24-33

Abstract

Geopolymer hybrid concrete is prepared by activating fly ash bottom ash with an alkaline solution and curing with Ordinary Portland Cement (OPC). OPC could be added to the mixture to increase the reaction, promote hydration, and assist in curing at room temperature. Peat water is an acidic organic environment that may reduce the durability of concrete. The purpose of this research is to determine the effect of Portland cement on the properties of FABA geopolymer hybrid concrete exposed to peat water. Portland cement was used in geopolymer as an additive and a substitute. Compressive strength, porosity, and weight change were evaluated for both mixtures. The NaOH molarities were 10, 12, and 14M, the NaOH/sodium silicate ratios were 1.5, 2.0, and 2.5, and the Ordinary Portland Cement percentages were 0, 10, and 15%. Specimens were exposed to peat water for up to 91 days following 28 days of room temperature curing. The geopolymer mixture with 10M NaOH, 2.5M Ms, and 15% OPC had the highest compressive strength and the lowest porosity. The FABA geopolymer hybrid with OPC had a slightly greater compressive strength and a lower porosity than the geopolymer containing OPC as a cement replacement material. In addition, weight change is more stable in geopolymers containing OPC. Based on the performance of both mixes in peat water, it is recommended to use OPC as an additive in FABA geopolymer hybrid concrete.