p-Index From 2020 - 2025
4.005
P-Index
This Author published in this journals
All Journal dCartesian: Jurnal Matematika dan Aplikasi Jupiter Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris Jurnal Buana Informatika Bulletin of Electrical Engineering and Informatics Telematika Jurnas Nasional Teknologi dan Sistem Informasi Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika Jurnal Ilmiah Dinamika Rekayasa (DINAREK) Sistemasi: Jurnal Sistem Informasi Jurnal Informatika INOVTEK Polbeng - Seri Informatika Techno Nusa Mandiri : Journal of Computing and Information Technology JURNAL ILMIAH INFORMATIKA JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal Informatika Universitas Pamulang Indonesian Journal of Computing and Modeling J-SAKTI (Jurnal Sains Komputer dan Informatika) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) CCIT (Creative Communication and Innovative Technology) Journal JUKANTI (Jurnal Pendidikan Teknologi Informasi) Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) JIKA (Jurnal Informatika) Aiti: Jurnal Teknologi Informasi Jurnal Teknik Informatika (JUTIF) Jurnal Ilmiah Wahana Pendidikan J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Nasional Teknik Elektro dan Teknologi Informasi J-Icon : Jurnal Komputer dan Informatika JEECS (Journal of Electrical Engineering and Computer Sciences) Jurnal Informatika: Jurnal Pengembangan IT Jurnal Pendidikan Teknologi Informasi (JUKANTI) Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) d'Cartesian: Jurnal Matematika dan Aplikasi
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Informatika Universitas Pamulang

Sequential Pattern Mining untuk Data Transaksi Penjualan Supermarket menggunakan Algoritm Generalized Sequential Pattern Albert Kurniawan; Ramos Somya
Jurnal Informatika Universitas Pamulang Vol 6, No 3 (2021): JURNAL INFORMATIKA UNIVERSITAS PAMULANG
Publisher : Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/informatika.v6i3.12483

Abstract

Online supermarket sales transaction data is a sequence dataset. This data stores purchase transaction data made by customers, so it can be analyzed using Market Basket Analysis (MBA) approach. The problem that is often experienced by supermarkets is the difficulty of implementing the accurate sales strategy to consumers. Based on these problems, this research will analyze the West Superstore supermarket dataset based on the MBA approach. The algorithm used is the Generalized Sequential Pattern (GSP) algorithm, where this algorithm can generate frequent items and sequence patterns, so that the resulting rules can be more accurate. The GSP algorithm in this study is implemented in the Python programming language. The test results show that the output of Python is in accordance with the output of the GSP algorithm calculation. The time required for rule generation in the GSP algorithm also depends on the number of records being used. The more number of sales transactions to be analyzed, it needs longer time in computation. The analysis conducted on the sales dataset at the West Superstore resulted in 391 rules, where these rules can be used by supermarkets to implement their sales strategies.