p-Index From 2020 - 2025
4.099
P-Index
This Author published in this journals
All Journal dCartesian: Jurnal Matematika dan Aplikasi Jupiter Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris Jurnal Buana Informatika Bulletin of Electrical Engineering and Informatics Telematika Jurnas Nasional Teknologi dan Sistem Informasi Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika Jurnal Ilmiah Dinamika Rekayasa (DINAREK) Sistemasi: Jurnal Sistem Informasi Jurnal Informatika INOVTEK Polbeng - Seri Informatika Techno Nusa Mandiri : Journal of Computing and Information Technology JURNAL ILMIAH INFORMATIKA JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Jurnal Informatika Universitas Pamulang Indonesian Journal of Computing and Modeling J-SAKTI (Jurnal Sains Komputer dan Informatika) JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) CCIT (Creative Communication and Innovative Technology) Journal Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi JUKANTI (Jurnal Pendidikan Teknologi Informasi) Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) JIKA (Jurnal Informatika) Aiti: Jurnal Teknologi Informasi Jurnal Teknik Informatika (JUTIF) Jurnal Ilmiah Wahana Pendidikan J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Nasional Teknik Elektro dan Teknologi Informasi J-Icon : Jurnal Komputer dan Informatika JEECS (Journal of Electrical Engineering and Computer Sciences) Jurnal Informatika: Jurnal Pengembangan IT Jurnal Pendidikan Teknologi Informasi (JUKANTI) Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) d'Cartesian: Jurnal Matematika dan Aplikasi
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

A hybrid recommender system based on customer behavior and transaction data using generalized sequential pattern algorithm Ramos Somya; Edi Winarko; Sigit Priyanta
Bulletin of Electrical Engineering and Informatics Vol 11, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i6.4021

Abstract

In the future, the quality of product suggestions in online retailers will influence client purchasing decisions. Unqualified product suggestions can result in two sorts of errors: false negatives and false positives. Customers may not return to the online store as a result of this. By merging sales transaction data and consumer behavior data in clickstream data format, this work offers a hybrid recommender system in an online store utilizing sequential pattern mining (SPM). Based on the clickstream data components, the product data whose status is only observed by consumers is assessed using the simple additive weighting (SAW) approach. Products with the two highest-ranking values are then coupled with product data that has been purchased and examined in the SPM using the generalized sequential pattern (GSP) method. The GSP algorithm produces rules in a sequence pattern, which are then utilized to construct product suggestions. According to the test results, product suggestions derived from a mix of sales transaction data and consumer behavior data outperform product recommendations generated just from sales transaction data. Precision, recall, and F-measure metrics values rose by 185.46, 170.83, and 178.43%, respectively.