Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Jurnal Computer Science and Information Technology (CoSciTech)

Metode Multi Attribute Utility Theory (MAUT) Untuk Penilaian Kinerja Guru Yamin, Abdul Yamin; Defit, Sarjon; Sumijan, Sumijan
Computer Science and Information Technology Vol 4 No 3 (2023): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v4i3.5920

Abstract

The performance assessment of teachers is a foundation or basis for the development decisions in terms of promotion and career of teachers in a madrasah or school. Currently, teacher performance assessment at Pondok Pesantren MTI Canduang is limited to teachers who are civil servants (PNS) or have obtained certification. In an effort to improve the quality of education, it is important to evaluate the performance of all teachers, including those who are not civil servants. The conventional method of assessment using paper-based evaluation sheets is considered inaccurate and inefficient due to the large number of teachers being assessed. Furthermore, there is no appropriate method for making decisions regarding teacher reward programs. Therefore, the purpose of this research is to apply the Multi Attribute Utility Theory (MAUT) method for teacher performance assessment. This method aims to provide a basis for decision-making in recommending teachers who deserve rewards in each assessment period. Based on the test results using the MAUT method with 40 teacher data and 12 defined assessment criteria, it was found that 3 data points for Tsanawiyah level had the highest value of 0.797 and the lowest value of 0.332, while 3 data points for Aliyah level had the highest value of 0.874 and the lowest value of 0.386. Thus, the research results can help the madrasah determine the best alternatives according to predefined criteria and weights. The resulting web-based application can facilitate the assessment process by making it easier, faster, and more accurate.
Implementasi Naïve Bayes dalam M-Series 4 Mobile Legends untuk Prediksi Kemenangan Tamaza, Muhammad Abyanda; Defit, Sarjon; Sumijan, Sumijan
Computer Science and Information Technology Vol 5 No 1 (2024): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v5i1.6707

Abstract

Mobile Legends is a game made by a developer from China called Moontoon which implements the Multiplayer Online Battle Arena (MOBA) system which is currently popular. The popularity of this game is proven by the holding of low, middle and high level tournaments. Recently a high level or international tournament called the M-Series World Championship was held in Indonesia. This game is played by two teams consisting of five players with the aim of destroying enemy targets in the form of towers. The problem in this game is winning and losing. One of the factors that determines victory or defeat is the choice of hero. The wrong hero composition during the draft pick stage can make it difficult for your team to play and lead to unexpected results. This research aims to predict the percentage level of Mobile Legends wins based on the drafted heroes. Prediction is the process of minimizing errors in systematically estimating the future based on past information. The technique used in this research is the Naïve Bayes algorithm. The Naïve Bayes algorithm is a classification method based on probability. This method consists of four stages, namely data understanding, data preparation, data analysis, and results analysis. This research dataset is provided by Youtube MPL Indonesia. The dataset consists of 880 training data and 90 test data for M-Series 4 Mobile Legends. The results of this research provide a percentage value in the form of prediction of 96.67%, precision of 95.65% and recall of 97.78%. The results of an accuracy rate of 96.67% using the Naïve Bayes algorithm show that predictions using the Naïve Bayes algorithm can be applied to predict win ratios in M-Series 4 Mobile Legends.