At the age of toddlers, children need special attention because their brains develop around 80%. Stunting is a form of long-term nutritional deficiency that occurs during the growth and development of children, which are marked with height that is not appropriate or less compared to children their age based on the standard WHO. This condition can adversely affect the cognitive development and health of children. Identifying toddlers who are at risk of experiencing stunting at an early stage is very important to reduce the adverse effects that can affect their quality of life in the future. Traditional methods are less effective in predicting stunting because they often ignore the complex factors that affect the nutritional status of toddlers. This study aims to classify stunting toddlers using Random Forest, Decision Tree, and Extreme Gradient Boost (XGBOOST) algorithms. The results obtained showed that the accuracy of the Random Forest algorithm received the highest accuracy of 99.72 %, Extreme Gradient Boost (XGBOOST) at 99.58 %, and Decision Tree received 98 87 %accuracy.