Yunita Nita
Departemen Farmasi Praktis, Fakultas Farmasi, Universitas Airlangga

Published : 15 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Information Systems Engineering and Business Intelligence

Clustering of Drug Sampling Data to Determine Drug Distribution Patterns with K-Means Method : Study on Central Kalimantan Province, Indonesia Wahyuri Wahyuri; Umi Athiyah; Ira Puspitasari; Yunita Nita
Journal of Information Systems Engineering and Business Intelligence Vol. 5 No. 2 (2019): October
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1970.953 KB) | DOI: 10.20473/jisebi.5.2.208-218

Abstract

Background: Drug sampling and testing in the context of post-marketing control is an important component to ensure drug safety in the supply chains. The results are used by the Indonesian National Agency for Drug and Food Control (NA-FDC) for conducting public warnings, evaluating the Good Manufacturing Practice (GMP) and Good Distribution Practice (GDP) implementation, and enforcing the law against drug violation.Objective: This study aimed to identify and analyze drug distribution patterns to provide an overview of drug sampling in the public sector. Methods: The data was collected from Balai Besar Pengawas Obat dan Makanan (BBPOM) Palangka Raya’s database. The collected data were the drug sampling data from Integrated Information Reporting Systems (IIRS) application from 2014 to 2018. Next, we employed CRISP-DM methodology to analyze the data and to identify the pattern. K-means clustering model was selected for data modeling.Results: The dataset contained five attributes, i.e., drug name, therapeutic classes, district/city, sample category, and evaluation of drug surveillance. The drug distribution pattern formed three clusters. First cluster contained 522 drug items in eight therapeutic classes and spread over ten districts, second cluster contained 1542 drug items in five therapeutic classes and spread over five districts, and third cluster contained 503 drug items in eleven therapeutic classes and spread across nine districts.Conclusion: To conclude, the applied data mining technique has improved the decision on the drug sampling planning. It also provides in-depth information on the improvement of drug post-marketing control performance in Central Kalimantan Province.Keywords: Clustering, CRISP-DM, Data Mining, Drug distribution patterns, Drug quality control, Drug sampling
Co-Authors A. A. Rai Mas Feby Kumala Dewi Aanisah Nabiilah Abby Rahmat Kamaruzzaman Abdul Rahem Aina Senja Yuliyani Aisyia Aisyia Ajeng Ambar Sari Alfira Maulidyah Rahmah Alisa Sari Nastiti Alvina Dewi Astuty Alysa Intan Santika Amelia Ghaisani Ana Yuda Andi Hermansyah Andika Fajar Fortuna Dhonny Kusuma Andreas Bayu Eka Wijayanto Andwynanda Bhadra Nareswari Andyko Ismareka Putra Angeline Tirza Galuh Palupi Anisa Maulidi Syavira Anisah Febrian Rahmawati Anita Nur Azizah Annisa Febriani Putri Arie Sulistyarini Athaya Bella Azzahrya Ayu Larasati Azza Maulidia El Java Azzalin Devariany Mufidah Bella Rizkia Dianita Cordellia Calista Amelia Devinta Julian Tupenalay Dewi Fatima Auzianingrum Muntari Diah Ayu Wakita Trimanda Diajeng Putri Kinanti Dian Parwati Dwi Rekno Ningrum Dyandra Anjani Putri Elida Zairina Elsa Ananda Setya Budi Farhan Athallah Rafif Febria Tri Erliana Firman Wahyudi Friesca Surya Nurhaidah Gesnita Nugraheni Gusti Noorrizka Veronika Ahmad Hana Sofiana Maghfira Helmy Kurniawan Ira Puspitasari Jamhari Jamhari Jessica Febe Prawadi Kambarwati Nur Shofa Khintan Rizky Fadhila Lestiono Lestiono Lestiono Lestiono Libriansyah Libriansyah Libriansyah Lichijati Lichijati Luthfia Hany Primadani Mochammad Haris Firdaus Mufarrihah, Mufarrihah Muhammad Noor Diansyah Muhammad Thariq Nadhafi Muhammad Zaesal Rizki Muzaffar Musdar, Tamzil Azizi Nada Aprilliya Nadhira Mileni Tsalitsia Neva Safitri Salsabila Ni Putu Widya Sriastuti Noer Aqiel Natsier Nursanti Arya Pratiwi Oktarina Mahanggi Putri Amelia Rooswita Rahmadi Wahyu Bowolaksono Ridka Aulia Santi Rini Ayu Agustin Rizdamaya Lintang Herfadanti Rossika Rachmafebri Salsabila Khairunnisa Salsabilla Madudari Kasatu Seisye Junita Miru Shafira Dwita Anugrah Sinta Wahyu Nur Muthi Siti Sarah Sylvia Annisa Mahardiani Tasya Mahira Salsabila Theresia Florida Damayanti Tri Wahyudi Umi Athiyah Via Qurrota A’yun Vidya Annisa Pebriastika Virnanda Syafira Hartatiningrum Wahyuri Wahyuri Wikanti Sunaringtyas Wiwin Dwi Rahmadani Tukloy Yuniar Gusrianti Azzahra