Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Academic Cloud ERP Quality Assessment Model Kridanto Surendro; Olivia Olivia
International Journal of Electrical and Computer Engineering (IJECE) Vol 6, No 3: June 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (248.427 KB) | DOI: 10.11591/ijece.v6i3.pp1038-1047

Abstract

In the past few decades, educational institutions have been using conventional academic ERP system to integrate and optimize their business process. In this delivery model, each educational institutions are responsible of their own data, installation, and also maintenance. For some institutions, it might cause not only waste of resources, but also problems in management and financial aspects. Cloud-based Academic ERP, a SaaS-based ERP system, begin to come as a solution with is virtualization technology. It allows institutions to use only the needed ERP resources, without any specific installation, integration, or maintenance needs. As the implementation of Cloud ERP increases, problems arise on how to evaluate this system. Current evaluation approaches are either only evaluating the cloud computing aspects or only evaluating the software quality aspects. This paper proposes an assessment model for Cloud ERP system, considering both software quality characteristics and cloud computing attributes to help strategic decision makers evaluate academic Cloud ERP system.
Data prediction for cases of incorrect data in multi-node electrocardiogram monitoring Sugondo Hadiyoso; Heru Nugroho; Tati Latifah Erawati Rajab; Kridanto Surendro
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1540-1547

Abstract

The development of a mesh topology in multi-node electrocardiogram (ECG) monitoring based on the ZigBee protocol still has limitations. When more than one active ECG node sends a data stream, there will be incorrect data or damage due to a failure of synchronization. The incorrect data will affect signal interpretation. Therefore, a mechanism is needed to correct or predict the damaged data. In this study, the method of expectation-maximization (EM) and regression imputation (RI) was proposed to overcome these problems. Real data from previous studies are the main modalities used in this study. The ECG signal data that has been predicted is then compared with the actual ECG data stored in the main controller memory. Root mean square error (RMSE) is calculated to measure system performance. The simulation was performed on 13 ECG waves, each of them has 1000 samples. The simulation results show that the EM method has a lower predictive error value than the RI method. The average RMSE for the EM and RI methods is 4.77 and 6.63, respectively. The proposed method is expected to be used in the case of multi-node ECG monitoring, especially in the ZigBee application to minimize errors.
Measuring information credibility in social media using combination of user profile and message content dimensions Erwin B. Setiawan; Dwi H. Widyantoro; Kridanto Surendro
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (691.356 KB) | DOI: 10.11591/ijece.v10i4.pp3537-3549

Abstract

Information credibility in social media is becoming the most important part of information sharing in the society. The literatures have shown that there is no labeling information credibility based on user competencies and their posted topics. This study increases the information credibility by adding new 17 features for Twitter and 49 features for Facebook. In the first step, we perform a labeling process based on user competencies and their posted topic to classify the users into two groups, credible and not credible users, regarding their posted topics. These approaches are evaluated over ten thousand samples of real-field data obtained from Twitter and Facebook networks using classification of Naive Bayes (NB), Support Vector Machine (SVM), Logistic Regression (Logit) and J48 algorithm (J48). With the proposed new features, the credibility of information provided in social media is increasing significantly indicated by better accuracy compared to the existing technique for all classifiers.