Mohd Nasir Taib
Universiti Teknologi MARA

Published : 14 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 14 Documents
Search

Robust k-NN approach for classifying Aquilaria oil species by compounds Ahmad Sabri, Noor Aida Syakira; Syafiqah Noramli, Nur Athirah; Nik Kamaruzaman, Nik Fasha Edora; Ismail, Nurlaila; Yusoff, Zakiah Mohd; Almisreb, Ali Abd; Tajuddin, Saiful Nizam; Taib, Mohd Nasir
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp178-189

Abstract

Accurate classification of Aquilaria oil species is essential for ensuring the quality and authenticity of agarwood oils, which are widely used in perfumes and traditional medicine. This study investigated the effectiveness of the k-nearest neighbours (k-NN) machine learning model for classifying Aquilaria oil species based on four significant chemical compounds: dihyro-βagarofuran, δ-guaiene, 10-epi-γ-eudesmol, and γ-eudesmol. The dataset comprised 480 samples of Aquilaria oil, which were analyzed using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID). The k-NN model, with an optimal k-value of 10 and using euclidean distance as the distance metric, achieved 100% accuracy, sensitivity, specificity, and precision in both training and testing datasets. These results demonstrate the robustness of k-NN in species identification, highlighting the discriminative power of the selected compounds. This study verifies that the integration of chemical profiling with machine learning offers a scalable solution for accurate species identification in the essential oil industry. Future work could explore hybrid models and data expansion techniques to further enhance the classification performance in more complex environmental conditions.
Unraveling the relationships among essential oil compounds in Aquilaria species using GC-MS and GC-FID techniques Syafiqah Noramli, Nur Athirah; Ahmad Sabri, Noor Aida Syakira; Roslan, Muhammad Ikhsan; Ismail, Nurlaila; Yusoff, Zakiah Mohd; Taib, Mohd Nasir
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp167-177

Abstract

Agarwood, a prized non-timber resource from the Aquilaria genus, is highly valued for its aromatic and medicinal properties, playing a significant role in the healthcare, fragrance, and pharmaceutical industries. This research analyzes essential oils from four Aquilaria species-A. beccariana, A. malaccensis, A. crassna, and A. subintegra-using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The primary objective is to optimize classification efficiency by reducing computational time and reducing multicollinearity through feature selection. Pearson correlation analysis revealed strong relationships among six chemical compounds-β-selinene (A), dihydro-β-agarofuran (B), δguaiene (C), 10-epi-γ-eudesmol (D), γ-eudesmol (E), and pentadecanoic acid (F). Through feature selection, the three most significant compoundsdihydro-β-agarofuran (B), γ-eudesmol (D), and 10-epi-γ-eudesmol (E)-were identified, achieving a remarkable 90.02% reduction in computational time (from 0.0403 to 0.0040 seconds). These findings highlight the effectiveness of structured feature selection in refining essential oil profiling and enhancing species classification accuracy. Future research directions include exploring machine learning-based feature selection techniques to further streamline feature reduction processes and expand the scope of essential oil authentication. This study contributes to advancing the scientific understanding and practical utilization of agarwood essential oils, paving the way for more efficient and reliable analytical frameworks.
Application of self-organizing map for modeling the Aquilaria malaccensis oil using chemical compound Che Hassan, Mohammad Arif Fahmi; Mohd Yusoff, Zakiah; Ismail, Nurlaila; Taib, Mohd Nasir
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i4.pp2889-2898

Abstract

Agarwood oil, known as ‘black gold’ or the ‘wood of God,’ is a globally prized essential oil derived naturally from the Aquilaria tree. Despite its significance, the current non-standardized grading system varies worldwide, relying on subjective assessments. This paper addresses the need for a consistent classification model by presenting an overview of Aquilaria malaccensis oil quality using the self-organizing map (SOM) algorithm. Derived from the Thymelaeaceae family, Aquilaria malaccensis is a primary source of agarwood trees in the Malay Archipelago. Agarwood oil extraction involves traditional methods like solvent extraction and hydro-distillation, yielding a complex mixture of chromone derivatives, oxygenated sesquiterpenes, and sesquiterpene hydrocarbons. This study categorizes agarwood oil into high and low grades based on chemical compounds, utilizing the SOM algorithm with inputs of three specific compounds: β-agarofuran, α-agarofuran, and 10-epi-φ-eudesmol. Findings demonstrate the efficacy of SOM-based quality grading in distinguishing agarwood oil grades, offering a significant contribution to the field. The non-standardized grading system's inefficiency and subjectivity underscore the necessity for a standardized model, making this research crucial for the agarwood industry's advancement.
Optimizing nonlinear autoregressive with exogenous inputs network architecture for agarwood oil quality assessment Roslan, Muhammad Ikhsan; Ahmad Sabri, Noor Aida Syakira; Noramli, Nur Athirah Syafiqah; Ismail, Nurlaila; Mohd Yusoff, Zakiah; Almisreb, Ali Abd; Tajuddin, Saiful Nizam; Taib, Mohd Nasir
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i5.pp3493-3502

Abstract

Agarwood oil is highly valued in perfumes, incense, and traditional medicine. However, the lack of standardized grading methods poses challenges for consistent quality assessment. This study proposes a data-driven classification approach using the nonlinear autoregressive with exogenous inputs (NARX) model, implemented in MATLAB R2020a with the Levenberg-Marquardt (LM) algorithm. The dataset, sourced from the Universiti Malaysia Pahang Al-Sultan Abdullah under the Bio Aromatic Research Centre of Excellence (BARCE) and Forest Research Institute Malaysia (FRIM), comprises chemical compound data used for model training and validation. To optimize model performance, the number of hidden neurons is systematically adjusted. Model evaluation uses performance metrics such as mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), coefficient of determination (R²), epochs, accuracy, and model validation. Results show that the NARX model effectively classifies agarwood oil into four quality grades which is high, medium-high, medium-low, and low. The best performance is achieved with three hidden neurons, offering a balance between accuracy and computational efficiency. This work demonstrates the potential of automated, standardized agarwood oil quality grading. Future research should explore alternative training algorithms and larger datasets to further enhance model robustness and generalizability.