Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Jurnal Sisfokom (Sistem Informasi dan Komputer)

Modeling Political Discourse in Indonesia’s 2024 Election Using Unsupervised Machine Learning Malikhatul Ibriza; Maya Rini Handayani; Wenty Dwi Yuniarti; Khothibul Umam
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 14 No. 2 (2025): MEY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v14i2.2359

Abstract

The 2024 General Election in Indonesia has generated a large volume of diverse and unstructured digital political discourse, necessitating a machine learning-based analytical approach for efficient, objective, and scalable data processing. This study aims to map political discourse from 14,813 text data collected from the open-source "Indonesian Election 2024" dataset on the Hugging Face platform, encompassing social media posts (e.g., Twitter) and online news content from January to March 2024. This research integrates three core methods: Principal Component Analysis (PCA) for dimensionality reduction, K-Means for clustering, and Latent Dirichlet Allocation (LDA) for topic extraction. This combination represents an original approach in Indonesian political discourse studies, leveraging unsupervised learning techniques to enhance topic mapping efficiency compared to single-method approaches in prior research. The analysis identified three primary clusters electoral technical issues, candidate figures, and official agendas yielding a Silhouette Score of 0.51 (a clustering quality metric) and a top topic coherence score of 0.51. Validation was conducted both quantitatively and qualitatively by content experts. This approach not only demonstrates strong analytical capability in uncovering thematic patterns but also offers practical applications for institutions such as the General Elections Commission (KPU), Election Supervisory Body (Bawaslu), and the media in monitoring strategic issues and detecting potential disinformation in the lead-up to the election.
Sentiment Analysis of User Reviews on the Game GTA V Using Support Vector Machine Saputra, Adika Kaka; Handayani, Maya Rini; Wibowo, Nur Cahyo Hendro; Umam, Khothibul
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 14 No. 3 (2025): JULY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v14i3.2368

Abstract

This study explores user sentiment toward the game Grand Theft Auto V (GTA V) by analyzing 101,540 user reviews collected from Steam and Kaggle. The reviews were processed using standard text preprocessing techniques including case folding, tokenization, stopword removal, and stemming. The TF-IDF method was used to convert text into numerical vectors, and sentiment classification was conducted using the Support Vector Machine (SVM) algorithm. The model was evaluated with accuracy, precision, recall, and F1-score as performance metrics. Results show that 88.8% of reviews are positive, while 11.2% are negative. The SVM model achieved an accuracy of 94.2% and an F1-score of 94.2%, indicating high reliability. Wordcloud analysis highlights key aspects valued by users such as graphics, story, and gameplay, while negative sentiment is often associated with technical issues like lag and bugs. This study demonstrates the effectiveness of combining TF-IDF and SVM for sentiment classification in the gaming domain, and it offers a scalable approach for understanding public opinion in digital platforms.
User Opinion Mining on the Maxim Application Reviews Using BERT-Base Multilingual Uncased Safitri, Sindy Eka; Yuniarti, Wenty Dwi; Handayani, Maya Rini; Umam, Khothibul
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 14 No. 3 (2025): JULY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v14i3.2391

Abstract

Online transportation applications such as Maxim are increasingly used due to the convenience they offer in ordering services. As usage increases, the number of user reviews also grows, serving as a valuable source of information for evaluating customer satisfaction and service quality. Sentiment analysis of these reviews can help companies understand user perceptions and improve service quality. This study aims to analyze the sentiment of user reviews on the Maxim application using the BERT-Base Multilingual Uncased model. BERT was chosen for its ability to understand sentence context bidirectionally, and it has proven to outperform traditional models such as MultinomialNB and SVM in previous studies, with an accuracy of 75.6%. The dataset used consists of 10,000 user reviews with an imbalanced distribution: 4,000 negative, 2,000 neutral, and 4,000 positive reviews. The data was split into 90% training data (9,000 reviews) and 10% test data (1,000 reviews). From the 9,000 training data, 15% or 1,350 reviews were allocated as validation data, resulting in a final training set of 7,650 reviews. Evaluation results show that BERT is capable of classifying sentiment into three categories positive, neutral, and negative, with an accuracy of 94.7%. The highest F1-score was achieved in the positive class (0.9621), followed by the neutral class (0.9412), and the negative class (0.9246). The confusion matrix shows that most predictions match the actual labels. These findings indicate that BERT is an effective and reliable model for performing sentiment analysis on user reviews of online transportation applications such as Maxim.
Unveiling Public Sentiment on Quarter Life Crisis: A Comparative Performance Evaluation of Support Vector Machine and Naïve Bayes Algorithms on Social Media X Data Septyorini, Talitha Dwi; Umam, Khothibul; Handayani, Maya Rini
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 14 No. 3 (2025): JULY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v14i3.2405

Abstract

Quarter Life Crisis (QLC) is one of the psychological issues experienced by many young adults and is characterized by uncertainty, anxiety, and emotional distress. In the digital era, public opinion about QLC is increasingly expressed through social media, particularly platform X. This study seeks to classify public opinion related to the QLC into positive and negative sentiments by employing two computational classification models, namely Support Vector Machine (SVM) and Naïve Bayes (NB). Despite the growing discourse, there has been no study specifically comparing classification algorithms to analyze public sentiment on QLC. Data collection was conducted through crawling techniques on platform X from November 2024 to January 2025, resulting in a total of 1120 tweets. The data underwent preprocessing, lexicon-based sentiment labeling, and TF-IDF word weighting. After preprocessing, classification using SVM and NB was evaluated by accuracy, precision, recall, and F1-score. Results indicate that SVM achieved superior performance with an accuracy of 83%, outperforming NB, which recorded 74%. These outcomes demonstrate that the SVM algorithm demonstrates superior performance in analyzing public sentiment regarding QLC. This research contributes by providing empirical evidence regarding algorithm performance for sentiment analysis in mental health topics, offering recommendations for effective early detection strategies utilizing social media data.
Enhancing Review Processing in the Video Game Adaptation Domain through VADER and Rating-Based Labeling using SVM Sajmira, Danita Divka; Umam, Khothibul; Handayani, Maya Rini
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 14 No. 3 (2025): JULY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v14i3.2409

Abstract

The adaptation of video games into films or television series has increasingly become a prominent trend in the entertainment sector, often eliciting diverse reactions from audiences.A prime example is The Last of Us, a video game adaptation series that generated substantial online discussions and sentiment, and serves as the specific case study in this research. Sentiment patterns found in audience reviews of The Last of Us on IMDb are analyzed using a domain-specific classification framework tailored to the language characteristics of entertainment media. A key issue addressed is the discrepancy between numerical ratings and the sentiment conveyed in review texts, which may lead to inconsistent labeling. The study employs a machine learning technique, Support Vector Machine (SVM), coupled with two distinct labeling methods: manual labeling based on IMDb ratings, and automatic labeling using the lexicon-driven VADER tool. A total of 2,017 English reviews of The Last of Us were gathered via web scraping from IMDb, followed by preprocessing, TF-IDF feature extraction, and hyperparameter optimization using RandomizedSearchCV. These results show that the SVM model trained on VADER-labeled data achieved an accuracy of 0.97, outperforming the model trained on manually labeled data at 0.79. Lexicon-based automatic labeling provides more consistent and reliable sentiment classification, particularly in specialized domains like video game adaptation reviews. Integrating VADER labeling with SVM enhances sentiment analysis effectiveness and offers practical value for media analytics, content creation, and audience insight research.