Articles
INOVASI PEMBELAJARAN STRUKTUR ALJABAR I DENGAN MENGGUNAKAN PROGRAM ISETL BERDASARKAN TEORI APOS
Nurlaelah, Elah;
Usdiyana, Dian
Jurnal Pengajaran MIPA Vol 6, No 1 (2005): JPMIPA: Volume 6, Issue 1, 2005
Publisher : Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.18269/jpmipa.v6i1.34975
Model pembelajaran ini bertujuan untuk membentuk konstruksi mental mahasiswa berdasarkan teori APOS (Action, process, object, dan schema). Pembelajarannya dilaksanakan berdasarkan siklus ACE (Activities, Class, discussion, Exercises). Implementasi pengajaran berdasarkan siklus ACE adalah belajar dengan menggunakan komputer dan belajar secara berkelompok. Model pembelajaran ini menjadikan mahasiswa aktif baik secara mental maupun fisik dalam mengikuti perkuliahan dan sekitar 50 % mahasiswa pengikut mata kuliah Struktur Aljabar I telah mencapai konstruksi mental action, process, object, dan schema.
Peran Representasi Matematis dalam Pembelajaran Perkalian Bentuk Aljabar melalui Pendekatan Matematika Realistik
Al Jupri;
Dian Usdiyana;
Ririn Sispiyati
Jurnal Elemen Vol 6, No 1 (2020): January
Publisher : Universitas Hamzanwadi
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.29408/jel.v6i1.1716
Algebra is an abstract topic in mathematics that should initially be learned by students in junior high school level. In order that this topic is easier to understand by students meaningfully, relevant mathematical representations should be used in the learning process. This research aims to analyze the role of mathematical representations in the learning of multiplication of algebraic expressions through the use of realistic mathematics education approach. To do so, we used a qualitative research method, in the form of the learning and teaching process involving 23 grade VII students (12-13-year-old) from one of the schools in Bandung. We analyzed video data of the learning process and the student written work from a formative test. The results showed that visual representations are frequently used by students at the beginning of the learning process and symbolic representations are used after the students get used to using visual representations. The result of the formative test indicated that the use of mathematical representations meaningfully could help students in solving multiplication of algebraic expressions problems. We conclude that the use of mathematical representations—in particular of visual representations using geometry context in algebra learning—helps students to understand the topic of multiplication of algebraic expressions.
Teaching and learning process for mathematization activities: The case of solving maximum and minimum problems
Al Jupri;
Dian Usdiyana;
Ririn Sispiyati
JRAMathEdu (Journal of Research and Advances in Mathematics Education) Volume 6 Issue 2 April 2021
Publisher : Department of Mathematics Education, Universitas Muhammadiyah Surakarta
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.23917/jramathedu.v6i2.13263
One of the topics within the course of Essential Concepts in School Mathematics (ECSM) for prospective mathematics teachers concerns maximum and minimum problems. This type of problems requires mathematization, i.e., the activity of transforming a problem into a symbolic mathematics problem and of reorganizing within the mathematical system, in the solution process. This research aims to investigate the implementation of the learning and teaching process of the ECSM course that strengthen prospective mathematics teachers’ conceptual understanding and problem solving abilities through mathematization activities. To reach this aim, this qualitative study was conducted through an observation of the learning and teaching process, including the formative written assessment, for the case of maximum and minimum problems, involving 19 students of mathematics education program. The results of this study revealed that the learning and teaching process is implemented by emphasizing the use of a deductive approach. The written assessment showed students’ strategies and difficulties in dealing with maximum and minimum problems. Main difficulties included constructing visual representations and mathematical models in the mathematization processes. It can be concluded that the learning and teaching processes of the ECSM course need to be improved so as to develop better conceptual understanding and problem solving abilities through mathematization activities.
Dampak Perkuliahan Geometri Pada Penalaran Deduktif Mahasiswa: Kasus Pembelajaran Teorema Ceva
Al Jupri;
Siti Fatimah;
Dian Usdiyana
AKSIOMA : Jurnal Matematika dan Pendidikan Matematika Vol 11, No 1 (2020): AKSIOMA: Jurnal Matematika dan Pendidikan Matematika
Publisher : Universitas PGRI Semarang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.26877/aks.v11i1.6011
Geometry is one of branches of mathematics that can develop deductive thinking ability for anyone, including students of prospective mathematics teachers, who learning it. This deductive thinking ability is needed by prospective mathematics teachers for their future careers as mathematics educators. This research therefore aims to investigate the influence of the learning process of a geometry course toward deductive reasoning ability of students of prospective mathematics teachers. To do so, this qualitative research was carried out through an observation of the learning process and assessment of the geometry course, involving 56 students of prospective mathematics teachers, in one of mathematics education program, in one of state universities in Bandung. A geometry topic observed in the learning process was the Ceva’s theorem, and the assessment was in the form of an individual written test on the application of the Ceva’s theorem in a proving process. The results showed that the learning process emphasizes on proving of theorems and mathematical statements. In addition, the test revealed that ten students are able to use the Ceva’s theorem in a proving process and different strategies of proving are found, including the use of properties of similarity between triangles and of the concept of trigonometry. This indicates a creativity of student deductive thinking in proving process. In conclusion, the geometry course that emphasizes on proving of theorems and mathematical statements has influenced on filexibility of student deductive thinking in proving processes.
Synthesis of Carbon Microparticles from Red Dragon Fruit (Hylocereus undatus) Peel Waste and Their Adsorption Isotherm Characteristics
Asep Bayu Dani Nandiyanto;
Rina Maryanti;
Meli Fiandini;
Risti Ragadhita;
Dian Usdiyana;
Sri Anggraeni;
Wafa Raihana Arwa;
Abdulkareem Sh. Mahdi Al-Obaidi
Molekul Vol 15, No 3 (2020)
Publisher : Universitas Jenderal Soedirman
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (754.27 KB)
|
DOI: 10.20884/1.jm.2020.15.3.657
This study aims to demonstrate the preparation of carbon microparticles obtained from red dragon fruit peel waste and their adsorption isotherm characteristics. The carbon microparticles were prepared by combining carbonization (at 250°C) and saw-milling process, and to get carbon microparticles with a specific size, sieve analysis was used. The adsorption isotherm was done by testing the adsorption ability of carbon microparticles with a specific size into curcumin solution in the batch-type reactor. The adsorption results were then compared to several standard isotherm models (i.e., Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models) for understanding what phenomena happen during the adsorption process. The adsorption analysis was also confirmed by testing several sizes of the carbon microparticles to predict the proposal mechanism in the adsorption process. The analysis results showed that the multilayer adsorption process occurs for all sizes in the micrometer range, and the process involves physical interactions between adsorbate and surface of adsorbent. The existence of multilayers is due to the possibility in the existence of porous structure in the carbon microparticles. This study is important for giving an alternative solution for reusable organic waste as well as supporting the fundamental researches in the further applications of carbon particles as catalyst and adsorbent.
AN ANALYSIS OF A GEOMETRY LEARNING PROCESS: THE CASE OF PROVING AREA FORMULAS
Al Jupri;
Sumanang Muhtar Gozali;
Dian Usdiyana
Prima: Jurnal Pendidikan Matematika Vol 4, No 2 (2020): Prima: Jurnal Pendidikan Matematika
Publisher : FKIP Universitas Muhammadiyah Tangerang
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31000/prima.v4i2.2619
Geometry is one of the courses in the curriculum for students of prospective mathematics teachers that can develop deductive thinking ability. The question is, how is the learning and teaching process of the geometry course implemented so as to develop this deductive thinking ability? This research, therefore, aims to investigate the learning and teaching process of a geometry course for prospective mathematics teachers. For reaching these aims, this qualitative study was conducted through observations on the learning process and the written test of a geometry course, for the case of area formulas, involving 56 students of mathematics education program. The results revealed that the learning process is implemented by emphasizing the use of the deductive approach, and from the written test we found various proof strategies in proving an area formula. We conclude that the learning and teaching process of the geometry course has influenced the development of student deductive thinking.
THE EFFECT OF MULTIREPRESENTATION DISCOURSE LEARNING ON STUDENTS PROBLEM SOLVING ABILITY
Tatang Herman;
Tetin Artinah;
Dian Usdiyana
Jurnal Pengajaran MIPA Vol 22, No 1 (2017): JPMIPA: Volume 22, Issue 1, 2017
Publisher : Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.18269/jpmipa.v22i1.8376
Solving mathematical problem for most secondary students was still a very difficult job, particularly in understanding the problem and assigning mathematical models. This research attempted to overcome the lack of mathematical problem solving skills of students by using Multi Representation Discourse model (DMR). The purpose of this research was to improve mathematical problem solving skills of junior high school students by implementing DMR model. The method of the research was quasi experiment method with control group pretest-posttest. The population of this research was 7th grade students the one of junior high school in Bandung city. From this research, the researcher randomly took two classes as sample. Instrument of this research was test for measuring the mathematical problem solving skills and a questionnaire and form observation for describing students’ respons. The result of this research shows that mathematical problem solving skills of students who got DMR learning model is higher than that of students who got direct instruction learning. Also students show positive responses enthusiastic, excited, fun and self-confident in learning mathematics.AbstrakMenyelesaikan soal pemecahan masalah matematika bagi kebanyakan siswa SMP merupakan pekerjaan yang sulit, terutama dalam memahami masalah dan menyusun model matematika. Penelitian ini dilakukan untuk mengatasi rendahnya kemampuan pemecahan masalah matematis menggunakan model pembelajaran Diskursus Multirepresentasi (DMR). Fokus utama penelitian ini adalah mengungkap apakah peningkatan model pembelajaran DMR dapat mengatasi kesulitan siswa dalam menyelesaikan soal pemecahan masalah matematika siswa SMP kelas VII. Metode penelitian yang digunakan dalam penelitian ini adalah metode kuasi eksperimen dengan desain kelompok kontrol pretes-postes. Populasi dalam penelitian ini adalah seluruh siswa kelas VII salah satu SMPN di Kota Bandung dengan dipilih sampel dua kelas VII. Instrumen dalam penelitian ini adalah tes untuk mengukur kemampuan pemecahan masalah matematis dan instrumen non tes berupa angket dan lembar observasi untuk memngetahui respon siswa terhadap pembelajaran yang dilakukan. Hasil penelitian menunjukkan bahwa peningkatan kemampuan pemecahan masalah matematis siswa yang mengikuti model DMR lebih tinggi dibandingkan siswa yang memperoleh pembelajaran langsung. Selain itu siswa menunjukkan respon yang positif, seperti antusias, senang dan percaya diri dalam pembelajaran matematika.
Systematic Literature Review: Pengaruh Resiliensi Matematis Terhadap Kemampuan Berpikir Matematis Tingkat Tinggi
Syifa Syafira Al Ghifari;
Dadang Juandi;
Dian Usdiyana
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 6 No 2 (2022): Jurnal Cendekia: Jurnal Pendidikan Matematika Volume 6 Nomor 2 Tahun 2022
Publisher : Mathematics Education Study Program
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.31004/cendekia.v6i2.1271
Penelitian ini bertujuan untuk mengetahui dan mendeskripsikan pengaruh resiliensi matematis terhadap kemampuan berpikir matematis tingkat tinggi. Metode yang digunakan dalam penelitian ini adalah metode Systematic Literature Review. Subjek penelitian pada kasus ini adalah siswa dan mahasiswa. Setelah melalui tahap inklusi dan uji kualitas, literatur yang dikaji sebanyak 25 artikel. Hasil dan temuan dalam artikel-artikel menunjukkan terdapat pengaruh resiliensi matematis terhadap kemampuan berpikir matematis tingkat tinggi. Kemampuan berpikir matematis tingkat tinggi yang dimaksud merujuk pada level taksonomi bloom yaitu kemampuan penalaran, kemampuan pemecahan masalah, kemampuan berpikir kritis dan kemampuan berpikir kreatif. Namun 20% dari kajian literatur tersebut menunjukkan tidak adanya pengaruh resiliensi matematis terhadap kemampuan berpikir matematis tingkat tinggi, khususnya pada kemampuan berpikir kritis matematis dan kreatif matematis.
STUDI META ANALISIS: PENGARUH STRATEGI REACT TERHADAP KEMAMPUAN KOMUNIKASI MATEMATIS SISWA
Syifa Syafira Al Ghifari;
Jarnawi Afgani Dahlan;
Dian Usdiyana
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 12, No 1 (2023)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (979.62 KB)
|
DOI: 10.24127/ajpm.v12i1.6689
Selama 10 tahun terakhir, telah banyak studi mengenai penerapan strategi REACT terhadap kemampuan komunikasi. Namun dari penelitian studi primer belum menjelaskan secara menyeluruh mengenai pengaruh karakteristik studi yang memiliki peran dalam tingkat variasi antar studi. Penelitian ini bertujuan untuk mengetahui besar pengaruh strategi REACT terhadap kemampuan komunikasi matematis siswa di Indonesia. Metode dalam penelitian ini menggunakan metode meta analisis. Pengumpulan data dilakukan dengan cara mengidentifikasi jurnal yang telah dipublikasikan di jurnal nasional, jurnal internasional dan prosiding. Berdasarkan kriteria inklusi diperoleh 12 artikel yang dianalisis dengan menggunakan software Comprehensive Meta Analysis (CMA) dan model efek acak sebagai metode estimasi. Hasil penelitian menunjukkan berdasarkan model efek acak pada effect size secara keseluruhan dari penerapan strategi REACT terhadap kemampuan komunikasi matematis siswa adalah 1,040 termasuk kategori efek sangat tinggi. Karakteristik studi dalam penelitian ini yaitu jenjang pendidikan, tahun penelitian, dan ukuran sampel. Hasil analisis statistik dari karakteristik studi menunjukkan bahwa jenjang pendidikan, tahun publikasi, dan ukuran sampel tidak berpengaruh secara signifikan peningkatan kemampuan komunikasi matematis siswa ketika menerapkan strategi REACT. Penerapan strategi REACT secara keseluruhan lebih efektif terhadap kemampuan komunikasi matematis siswa dibandingkan dengan penerapan pembelajaran konvensional.
Learning Obstacles of Islamic Junior High School Students on Angle Concepts
Yuni Hajar;
Didi Suryadi;
Dian Usdiyana
International Journal of STEM Education for Sustainability Vol 3, No 2 (2023)
Publisher : Gemilang Maju Publikasi Ilmiah (GMPI)Â
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.53889/ijses.v3i2.236
Angle is one of the concepts from the field of geometry that is important for students to learn because there are basic concepts of geometry that can be used in other fields of mathematics and everyday life. Students still experience learning obstacles in angle concepts. This study aimed to identify learning obstacles experienced by Islamic junior high school students in angle concepts. The research method used is a qualitative method with a phenomenological approach. The samples in this study were 8-grade students and mathematics teachers from one of the Islamic junior high schools in Bandung district, Indonesia. The results show that students experience learning obstacles, and can be concluded as follows, (1) instrumental ontogenic obstacles, caused by students not being used to facing difficult problems; (2) conceptsual ontogenic obstacles, caused by low mastery of prerequisite concepts; (3) psychological ontogenic obstacles, caused by low student interest in learning; (4) epistemological obstacles, caused by low mastery of angle concepts.