Masturyono Masturyono
Badan Meteorologi Klimatologi dan Geofisika (BMKG)

Published : 9 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Meteorologi dan Geofisika

LINEASI PATAHAN GEOLOGI BERDASARKAN DISTRIBUSI HIPOSENTER RELOKASI DI WILAYAH JAWA Supriyanto Rohadi; Masturyono Masturyono
Jurnal Meteorologi dan Geofisika Vol. 16 No. 3 (2015)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v16i3.290

Abstract

Penentuan hiposenter gempabumi sebelum relokasi biasanya menggunakan metode single even determination (SED). Hiposenter gempabumi yang diperoleh dengan metode tersebut umumnya masih mengandung kesalahan akibat struktur model kecepatan di permukaan bumi yang tidak termodelkan. Pada penelitian ini dilakukan relokasi hiposenter menggunakan metode tomografi double-difference (tomoDD), metode ini mampu meningkatkan akurasi posisi hiposenter karena mampu mereduksi kesalahan akibat struktur model di permukaan yang tidak termodelkan. TomoDD adalah program tomografi yang melakukan inversi lokasi hiposenter dan struktur kecepatan secara simultan dengan menggunakan data waktu tiba absolut dan waktu tiba diferensial. Data gempabumi yang digunakan berasal dari katalog BMKG, yaitu gempabumi yang terekam bulan April 2009 hingga Februari 2011di wilayah Jawa, dengan batas lintan 5⁰ LS - 11⁰ LS dan batas bujur 105⁰ BT - 115⁰ BT, serta interval kedalaman 2 km hingga 684 km. Jumlah stasiun seismograf yang digunakan adalah 36 stasiun. Relokasi gempabumi mengindikasikan dengan jelas lineasi geologi beberapa patahan geologi lokal, seperti: Jawa Barat Fault Zone, Pelabuhan Ratu Fault Zone, patahan geologi Cimandiri, dan patahan geologi di selat Sunda. Relokasi gempabumi di zona patahan geologi Opak terbagi menjadi dua kelompok atau klaster, yaitu distribusi sumber pada patahan geologi Opak dan distribusi sumber gempabumi di timur patahan geologi Opak. Single Event Determination (SED) method is generally used for Earthquake hypocenter determination. Earthquake hypocenter which is obtained by these methods generally still contains errors as a result of an unmodeled surface velocity structure. In this research, the hypocenter relocation using the double-difference tomography (tomoDD) method is conducted. This method can improve the accuracy of the hypocenter position since it can reduce the error due to unmodeled surface velocity structure. TomoDD is a tomography program that simultaneously inverts event locations and velocity structure by using absolute and differential arrival time data. Earthquake data used came from BMKG catalogs, with the earthquake were being recorded from April 15, 2009, to April 15, 2009, in Java, latitude boundary5⁰S-11⁰S, longitude105⁰E-115⁰E, and the depth interval ranged from 2 to 684 km. The total numbers of seismograph stations are 36 stations. The relocation of earthquakes indicates the existence of geological lineation of some local faults, such as Fault Zone West Java, Pelabuhan Ratu, Cimandiri Fault, and Fault in Sunda strait. Relocation of earthquakes in Opak fault zones was divided into two clusters, which are the seismicity distribution around Opak fault and seismicity distribution east of Opak fault.
KAJIAN KERENTANAN TANAH BERDASARKAN ANALISIS HVSR DI DAERAH SEMBURAN LUMPUR SIDOARJO DAN SEKITARNYA, JAWA TIMUR, INDONESIA Karyono Karyono; Ildrem Syafri; Abdurrokhim Abdurrokhim; Masturyono Masturyono; Supriyanto Rohadi; Januar Arifin; Ajat Sudrajat; Adriano Mazzini; Soffian Hadi; Agustya Agustya
Jurnal Meteorologi dan Geofisika Vol. 17 No. 1 (2016)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v17i1.398

Abstract

Aluvium merupakan fitur geologi yang memiliki sifat rentan terhadap pengaruh gempabumi. Daerah Porong dan sekitarnya tempat semburan Lumpur Sidoarjo (Lusi) terjadi merupakan daerah dataran yang ditutupi oleh endapan aluvium Delta Brantas, sehingga daerah ini merupakan zona lemah yang rentan terhadap pengaruh gempabumi. Hal ini diperkuat dengan adanya sesar Watukosek di daerah tersebut. Dengan tujuan untuk membuktikan hal tersebut maka dilakukan observasi seismik dengan cara memasang 71 stasiun pengamat gempabumi temporal yang tersebar di daerah Sidoarjo dan sekitarnya. Hasil analisis Horizontal Vertical Spectral Ratio (HVSR) terhadap data seismik diperoleh sebaran frekuensi natural bawah permukaan lebih rendah di daerah Lusi yaitu 0,4Hz. Hasil analisis juga mengungkap bahwa di daerah tersebut mempunyai amplifikasi tanah sebesar 5,2 dan tingkat kerentanan tanah sebesar 56, lebih tinggi dibandingkan dengan daerah lain di sekitarnya. Karena letaknya di zona lemah, maka berimplikasi bahwa Lusi menjadi sensitif terhadap gangguan luar misalnya dampak kejadian gempabumi menjadi lebih besar pada daerah ini. Alluvium is a geological feature characterized by high risk vulnerability influenced by the earthquakes. Porong and surrounding areas where the eruption of Lumpur Sidoarjo’s (Lusi) occurred are areas covered by alluvium sediment of Brantas Delta, as consequences this area is a weak zone characterized by high risk vulnerability as well. This is also supported by the present of Watukosek fault system in this area. To proved, we deployed 71 temporary seismic stations distributed in and around Sidoarjo area. The Horizontal Vertical Spectral Ratio (HVSR) analysis revealed that the natural frequency in Lusi area is about 0.4Hz, this is lower than other part areas. The analysis also revealed that this area has soil amplification about 5.2 and soil vulnerability index about 56, these are higher compared with other part areas. These results support that this area is a weak zone. Because of its location in a weak zone, this implies that Lusi became sensitive to external perturbation for example the earthquake events would have greater impact to this area.
STUDI AWAL PENYUSUNAN SKALA INTENSITAS GEMPABUMI BADAN METEOROLOGI KLIMATOLOGI DAN GEOFISIKA Muzli Muzli; Masturyono Masturyono; Jaya Murjaya; Mochammad Riyadi
Jurnal Meteorologi dan Geofisika Vol. 17 No. 2 (2016)
Publisher : Pusat Penelitian dan Pengembangan BMKG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31172/jmg.v17i2.440

Abstract

Untuk mengukur dampak gempabumi terhadap infrastruktur dan kondisi lainnya selama ini Indonesia menggunakan skala intensitas gempabumi menurut Modified Mercalli Intensity (MMI). Skala ini cukup kompleks dengan dua belas tingkatan dan kondisi bangunan yang ada sekarang sudah tidak sesuai dengan kondisi saat skala tersebut diperkenalkan. Oleh karena itu perlu adanya skala intensitas gempabumi yang lebih sederhana, mudah dipahami dan disesuaikan dengan kondisi infrastruktur yang ada saat ini di Indonesia dengan tetap mengacu pada nilai parameter ilmiah lainnya. Badan Meteorologi Klimatologi dan Geofisika menggagas penyusunan skala intensitas gempabumi BMKG (SIG-BMKG) dengan skala I-V. Dengan mempunyai lima skala ini, SIG-BMKG menjadi lebih sederhana dan mudah dipahami masyarakat serta tetap mengakomodir keterangan dampak yang ditimbulkan gempabumi dan parameter saintifik lainnya. Perbandingan penggunaaan skala intensitas MMI dan SIG-BMKG terhadap beberapa kasus gempabumi yaitu gempabumi Sorong tanggal 24 September 2015 dengan magnitudo 6,8, Gempabumi Sumbawa Barat tanggal 12 Februari 2016 dengan magnitudo 6,6 dan Gempabumi Painan, Sumatera Barat tanggal 2 Juni 2016 dengan magnitudo 6,6, menunjukkan bahwa SIG-BMKG dapat diimplementasikan dengan relatif lebih mudah dan akurat dibandingkan dengan skala MMI. In order to measure the impact of a strong earthquake, the intensity scale is normally used. Up to now Indonesia uses the scale of Modified Mercalli Intensity (MMI). The MMI scale is relatively complicated with the twelve levels and the current development of modern building design is not suitable anymore for the scale as it was introduced for the first time. Therefore, it is necessary to have a universal but simple intensity scale, easy to be implemented and suitable for current typical buildings but also reflects the scientific parameters. Indonesia as one of the countries which is very prone of significant or destructive earthquakes, should have a new and more representative intensity scale which is suitable for the typical buildings in Indonesia. Badan Meteorologi, Klimatologi dan Geofisika (BMKG) proposes the scale of intensity i.e. the Earthquake Intensity Scale of BMKG (SIG-BMKG) with the scales from I to V. With these five scales, SIG-BMKG is much simple and easier to be used but could describe most of typical impacts. The comparison of MMI and SIG-BMKG scales to several cases of significant earthquakes is implemented for the 2015, Mw 6.8 Sorong earthquake, the 2016, Mw 6.6 Sumbawa Barat earthquake and the 2016, Mw 6.6 Painan, West Sumatra earthquake. The results show that the SIG-BMKG scale can be implemented relatively easier with better accuracy than MMI scale.