Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Scientific Journal of Informatics

Metode K-Means untuk Optimasi Klasifikasi Tema Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (SVM) Somantri, Oman; Wiyono, Slamet; Dairoh, Dairoh
Scientific Journal of Informatics Vol 3, No 1 (2016): May 2016
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v3i1.5845

Abstract

Masih sulitnya dalam menentukan klasifikasi tema tugas akhir mahasiswa sering dialami oleh setiap perguruan tinggi. Algoritma SVM digunakan untuk mengklasifikasi jenis tema tugas akhir mahasiswa. SVM merupakan metode yang banyak digunakan untuk klasifikasi. K-Means Clustering merupakan metode pengelompokan paling sederhana yang mengelompokkan data kedalam k kelompok berdasar pada centroid masing-masing kelompok. Optimasi klasifikasi tema tugas akhir mahasiswa menggunakan SVM dan K-Means untuk meningkatkan tingkat akurasi. Hasil yang diperoleh memiliki tingkat akurasi yang lebih baik yaitu 86,21%. 
Metode K-Means untuk Optimasi Klasifikasi Tema Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (SVM) Somantri, Oman; Wiyono, Slamet; Dairoh, Dairoh
Scientific Journal of Informatics Vol 3, No 1 (2016): May 2016
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v3i1.5845

Abstract

Masih sulitnya dalam menentukan klasifikasi tema tugas akhir mahasiswa sering dialami oleh setiap perguruan tinggi. Algoritma SVM digunakan untuk mengklasifikasi jenis tema tugas akhir mahasiswa. SVM merupakan metode yang banyak digunakan untuk klasifikasi. K-Means Clustering merupakan metode pengelompokan paling sederhana yang mengelompokkan data kedalam k kelompok berdasar pada centroid masing-masing kelompok. Optimasi klasifikasi tema tugas akhir mahasiswa menggunakan SVM dan K-Means untuk meningkatkan tingkat akurasi. Hasil yang diperoleh memiliki tingkat akurasi yang lebih baik yaitu 86,21%.
Metode K-Means untuk Optimasi Klasifikasi Tema Tugas Akhir Mahasiswa Menggunakan Support Vector Machine (SVM) Somantri, Oman; Wiyono, Slamet; Dairoh, Dairoh
Scientific Journal of Informatics Vol 3, No 1 (2016): May 2016
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v3i1.5845

Abstract

Masih sulitnya dalam menentukan klasifikasi tema tugas akhir mahasiswa sering dialami oleh setiap perguruan tinggi. Algoritma SVM digunakan untuk mengklasifikasi jenis tema tugas akhir mahasiswa. SVM merupakan metode yang banyak digunakan untuk klasifikasi. K-Means Clustering merupakan metode pengelompokan paling sederhana yang mengelompokkan data kedalam k kelompok berdasar pada centroid masing-masing kelompok. Optimasi klasifikasi tema tugas akhir mahasiswa menggunakan SVM dan K-Means untuk meningkatkan tingkat akurasi. Hasil yang diperoleh memiliki tingkat akurasi yang lebih baik yaitu 86,21%.