Claim Missing Document
Check
Articles

METODE DEKOMPOSISI ADOMIAN LAPLACE UNTUK SOLUSI PERSAMAAN DIFERENSIAL NONLINIER KOEFISIEN FUNGSI Yuni Yulida
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 6, No 1 (2012): JURNAL EPSILON VOLUME 6 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (288.987 KB) | DOI: 10.20527/epsilon.v6i1.79

Abstract

In this paper, the Adomian Laplace decomposition method and method are presented applied to determine the approximation solution for the ordinary nonlinear differential equations with functional coefficients. This method combines Laplace and Laplace transformation theory The nonlinearities of the differential equations are described by the Adomian polynomial.
MODEL MANGSA-PEMANGSA DENGAN FUNGSI RESPON HOLLING DAN PEMANENAN Mustika Khadijah; Yuni Yulida; Dewi Sri Susanti
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(2), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (235.698 KB) | DOI: 10.20527/epsilon.v15i2.4593

Abstract

The mathematical model of prey-predator interaction is one of the stages of solving mathematical problems by simplifying events that occur in mathematical form. In this research, we discuss a prey-predator model using a type II Holling response function without harvesting and a prey-predator model using a type II Holling response function with harvesting. The purpose of this research was to explain the formation of a prey-predator model with a type II Holling response and a preypredator model with a type II Holling response with harvesting, to determine the stability at the equilibrium point of the model, and to create a model simulation using several sample parameters. The results obtained were three equilibrium points for the prey-predator model with type II Holling response without harvesting and two equilibrium points for the prey-predator model with type II Holling response with harvesting. The stability at two equilibrium points of the prey-predator model using the type II Holling response function without harvesting was asymptotically stable and the stability at one equilibrium point in the prey-predator model using the type II Holling response function in the presence of harvesting in the prey population was asymptotically stable. The comparison of numerical simulations showed that the number of predator population without harvesting was greater than the number of predator population with harvesting.
MODEL MATEMATIKA KOMENSALISME ANTARA DUA SPESIES DENGAN SUMBER TERBATAS Friska Erlina; Yuni Yulida; Faisal Faisal
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 8, No 1 (2014): JURNAL EPSILON VOLUME 8 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (214.634 KB) | DOI: 10.20527/epsilon.v8i1.102

Abstract

MODEL MATEMATIKA KOMENSALISME ANTARA DUA SPESIES DENGAN SUMBER TERBATAS
PEMETAAN LINIER KONTINU PADA RUANG BERNORMA KABUR Muhammad Ahsar Karim; Yuni Yulida
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 3, No 2 (2009): JURNAL EPSILON VOLUME 3 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (210.042 KB) | DOI: 10.20527/epsilon.v3i2.42

Abstract

In metric space we have known about linear mapping and continuousmapping. Both of the mappings have the important properties in normed space. Inthis paper, we study the properties on fuzzy normed space. We start our resultswith first to show that the fuzzy normed space is fuzzy metric space. Then, wedefine the fuzzy continuous mapping and the fuzzy bounded set on fuzzy normedspace. Moreover, we construct the generalisation of properties of relationbetween fuzzy bounded mapping and fuzzy continuous mapping on fuzzy normedspace.
ASURANSI JOINT LIFE SEUMUR HIDUP Bizaini Bizaini; Dewi Sri Susanti; Yuni Yulida
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 10, No 2 (2016): JURNAL EPSILON VOLUME 10 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (201.674 KB) | DOI: 10.20527/epsilon.v10i2.33

Abstract

Salah satu jenis asuransi jiwa adalah asuransi jiwa seumur hidup. Asuransi tersebut berlaku kondisi single life dan joint life. Kondisi joint life berlaku ketika jumlah tertanggung lebih dari satu orang. Pada asuransi joint life seumur hidup, jangka waktu perlindungan asuransi diberikan selama semua tertanggung masih hidup atau sampai sedikitnya satu tertanggung meninggal dengan jumlah tertanggung sebanyak m orang. Pada penelitian ini diperoleh rumusan anuitas hidup berjangka dan asuransi jiwa seumur hidup pada kondisi joint life dalam bentuk simbol komutasi.Kata kunci : Asuransi jiwa seumur hidup, Anuitas, Joint life.
METODE DEKOMPOSISI ADOMIAN UNTUK MENYELESAIKAN PERSAMAAN PANAS Andi Tri Wardana; Yuni Yulida; Na’imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 9, No 2 (2015): JURNAL EPSILON VOLUME 9 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (164.102 KB) | DOI: 10.20527/epsilon.v9i2.14

Abstract

The differential equation is an equation in which there is a derivative of one or more independent variables. The differential equation can be divided into two groups, Ordinary differential equation and Partial differential equation. One method for solving ordinary differential equations is the Adomian Decomposition Method which is used to facilitate in the solving of ordinary nonlinear differential equations. Adomian decomposition method is a method that can also be used to determine the solution of partial differential equations, one of which can be applied to the heat equation. This study was conducted using literature study. The results of this study show that the solution of the linear heat equation is: 1100 (,) (,) (, 0) (,) (,) nttxxnnnuxtuxtuxLgxtLLuxt∞∞ - ==  == ++ ΣΣ with 10 ( ,) (, 0) (,) tuxtuxLgxt - = + and 1 (,) (,), 1,2,3, ... ntxxnuxtLLuxtn - == and the solution of nonlinear heat equation is: 11000 (,) (,) (, 0) (,) (,) ntxxntnnnnuxtuxtuxLLuxtLAxt∞∞∞ - ===== ++ ΣΣΣ with 0 (,) (, 0) uxtux = and 111 (,) (,) (,), 0,1,2, ... ntxxntnuxtLLuxtLAxtn - + = + =
MODEL MATEMATIKA PENYEBARAN PENYAKIT DEARE DENGAN ADANYA TREATMENT Vika Astuti; Yuni Yulida; Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(1), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (389.548 KB) | DOI: 10.20527/epsilon.v15i1.3152

Abstract

Diare (diarrhea) merupakan suatu penyakit lingkungan dengan faktor penyebab yang paling dominan adalah pembuangan tinja dan sarana air bersih. Dua faktor tersebut akan berinteraksi bersamaan dengan perlakuan manusia. Jika lingkungan tercemar virus atau bakteri kemudian ditambah dengan perlakuan manusia yang tidak sehat dengan melalui apa yang mereka makan juga minum, maka akan mendatangkan penyakit diare. Individu yang terinfeksi penyakit diare dapat diberikan perlindungan untuk melawan infeksi melalui pengobatan (treatment). Penyakit diare tersebut dapat dinyatakan melalui model SIR tetapi model tersebut tidak cukup untuk menyelesaikan permasalahan ini maka dilakukan pengembangan model tersebut dengan menambahkan adanya kompartemen Treatment. Tujuan dari penelitian ini yaitu membentuk model kemudian menentukan solusi positif, setela itu menentukan ekuilibrium, menentukan nilai Basic Reproduction Number dan yang terakhir menentukan kestabilan model matematika penyakit diare dengan adanya treatment. Pada penelitian ini nilai Basic Reproduction Number ditentukan menggunakan Next Generation Matrix, sedangkan analisa kestabilan di sekitar ekuilibrium penyakit menggunakan nilai eigen dari Matriks Jacobian. Hasil dari penelitian ini adalah terbentuknya model diare dengan adanya treatment dan diperoleh solusi positifnya. Kemudian ekuilibrium bebas penyakit pada model ini stabil asimtotik lokal jika  dan ekuilibrium endemiknya yaitu stabil asimtotik lokal jika  dan syarat tambahan. Simulasi model diberikan menggunakan paramater-paramter yang bersesuaian dengan syarat pada analisa kestabilan. 
SOLUSI PERSAMAAN DIFERENSIAL PARSIAL LINIER ORDE DUA MENGGUNAKAN METODE POLINOMIAL TAYLOR Rezky Putri Rahayu; Yuni Yulida; Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 11, No 1 (2017): JURNAL EPSILON VOLUME 11 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (197.88 KB) | DOI: 10.20527/epsilon.v11i1.38

Abstract

Partial differential equation is an equation containing a partial derivative of one or more dependent variables on more than one independent variable. In the differential equation there are coefficients in the form of constants and functions. The solution of a partial differential equation whose coefficients are constants is easily determined. However, the solution of the differential equations whose coefficients are functions is quite difficult to determine. One method that can be used to determine the solution is by using Taylor polynomial. This method can be used in second-order linear partial differential equation with coefficient of function with two independent variables. The purpose of this research is to determine the Taylor polynomial solution on second-order linear partial differential equation. In this research we get solution from second-order linear partial differential equation by assuming solution in the form of polynomial of Taylor having degree ???????? ???????? (????????, ????????) = ????????αα????????, ???????? (????????-????????0) ???????? (????????-????????1) ????????, ???????????????? = 0???????????????? = 0 with αα????????, ???????? = 1????????! ????????! ???????? (????????, ????????) (????????0, ????????1) is the Taylor polynomial coefficient, or can be expressed in terms of the matrix equation ???????? (????????, ????????) = ????????????????????????
MODEL LOGISTIK FUZZY DENGAN ADANYA PEMANENAN PROPORSIONAL Fitri Nor Annisa; Muhammad Ahsar Karim; Yuni Yulida
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(1), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (779.172 KB) | DOI: 10.20527/epsilon.v16i1.5552

Abstract

The logistic growth model with proportional harvesting is a population growth model that takes into account harvesting factors. In real life, not all conditions can be known with certainty, such as different growth rates in each population and harvest rates depending on the needs of the harvester. To overcome these conditions, there is a concept that accommodates the problem of uncertainty, namely the fuzzy concept. This concept can be induced into a logistic model with proportional harvesting which assumes the intrinsic growth rate and the harvest rate is expressed by fuzzy numbers. The purpose of this research is to form a logistic model with fuzzy proportional harvesting, analyze the stability of the model, and form a numerical simulation. This study uses the alpha-cut method to generalize the intrinsic growth rate and harvest rate from crisp numbers to fuzzy numbers, then the Graded Mean Integration Representation (GMIR) method to defuzzify the model, and the linearization method to analyze the stability of the model. The results of this study obtained a logistic model with proportional harvesting. Then the model was developed into a logistic model with fuzzy proportional harvesting by assuming the intrinsic growth rate and the harvest rate expressed by fuzzy numbers. From the model obtained 2 equilibrium points, namely the first equilibrium point is unstable and the second equilibrium point is asymptotically stable under certain conditions. Model simulation is given to show illustration of stability analysis. From the simulation, it can also be shown that the higher the graded mean value, the lower the population.
SOLUSI PERSAMAAN DIFERENSIAL FRAKSIONAL LINIER HOMOGEN DENGAN METODE MITTAG-LEFFLER Helfa Oktafia Afisha; Yuni Yulida; Nurul Huda
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 10, No 1 (2016): JURNAL EPSILON VOLUME 10 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (223.837 KB) | DOI: 10.20527/epsilon.v10i1.53

Abstract

The classical calculus only studies derivatives as well as differential equations of integers, whereas for non-integral integers and differential equations are not included. Thus the concept of fractional calculus, which studies the integral and non-integral order of abbreviated diferintegral including fractional differential equations (PDF). In this paper we present a method for obtaining a homogeneous linear PDF solution built in the Mittag-Leffler function in the form of a series ???????? (????????) = ????????αα (???????????? αα) = ???????????????????????????????????????? Γ (???????????????? + 1) ∞???????? = 0 This series converges for ???????? at ????-1????????, 1????????????. The derivative search of ???????? (????????), is done by deriving each term from ???????? (????????) using the definition of Caputo derivative followed by determining the coefficient ???????????????? to obtain the PDF solution.