Claim Missing Document
Check
Articles

SOLUSI PERSAMAAN DIFERENSIAL FRAKSIONAL LINIER HOMOGEN DENGAN METODE MITTAG-LEFFLER Helfa Oktafia Afisha; Yuni Yulida; Nurul Huda
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 10, No 1 (2016): JURNAL EPSILON VOLUME 10 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (223.837 KB) | DOI: 10.20527/epsilon.v10i1.53

Abstract

The classical calculus only studies derivatives as well as differential equations of integers, whereas for non-integral integers and differential equations are not included. Thus the concept of fractional calculus, which studies the integral and non-integral order of abbreviated diferintegral including fractional differential equations (PDF). In this paper we present a method for obtaining a homogeneous linear PDF solution built in the Mittag-Leffler function in the form of a series ???????? (????????) = ????????αα (???????????? αα) = ???????????????????????????????????????? Γ (???????????????? + 1) ∞???????? = 0 This series converges for ???????? at ????-1????????, 1????????????. The derivative search of ???????? (????????), is done by deriving each term from ???????? (????????) using the definition of Caputo derivative followed by determining the coefficient ???????????????? to obtain the PDF solution.
MODIFIKASI MODEL SEIR PADA PENYAKIT CAMPAK Sofia Faridatun Nisa; Yuni Yulida; Faisal Faisal
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(1), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (564.24 KB) | DOI: 10.20527/epsilon.v16i1.4649

Abstract

The epidemic models Susceptible, Exposed, Infected and Recovered (SEIR) are used for the spread of diseases that have a latent period (incubation period) which one is measles disease. Latent periods are entered into the Exposed class. Measles itself after the incubation period will experience clinical symptoms consisting of three stages, which are prodromal stage, eruption stage and healing stage. Due to these clinical symptoms, the SEIR model can be modified by dividing the Infected class into two classes, which are Infected Prodromal class and Infected Eruption class. While the healing stage enters Recovered class. The spread of measles can be made into an epidemic model with five classes which are  and . The purpose of this study is to explain the modification of the model, determine and analyze the model's local stability at the equilibrium point of the model and to interpret model simulations with multiple stability-eligible parameter values. The results obtained from this study are modification of  model which is  model. Based on model, two equilibrium points obtained which are disease-free equilibrium points and endemic equilibrium points, which are locally asymtotics stable with conditions. Model simulations are presented to support an explanation of model stability analysis based on stability-meeting parameters
PENENTUAN PREMI TUNGGAL PADA ASURANSI BERJANGKA CONTINGENT Wuri Setyana Sari; Yuni Yulida,; Aprida Siska Lestia
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 12, No 1 (2018): JURNAL EPSILON VOLUME 12 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (240.833 KB) | DOI: 10.20527/epsilon.v12i1.204

Abstract

PENENTUAN PREMI TUNGGAL PADA ASURANSIAsuransi jiwa dapat diartikan sebagai perjanjian dimana tertanggung membayar premi kepada penanggung dan penanggung akan memberikan santunan jika tertanggung meninggal dunia. Dalam asuransi, tertanggung dapat membayarkan sejumlah uang kepada penanggung dengan menggunakan premi tunggal dimana pembayaran tersebut hanya dilakukan selama satu kali di awal perjanjian.Salah satu bagian asuransi jiwa joint life adalah asuransi jiwa contingent, yaitu jenis asuransi yang memberikan santunan dengan mengaitkan urutan kematian. Jika tertanggung mengikuti asuransi selama n tahun dan mengaitkan urutan kematian dalam menerima santunan maka jenis asuransi yang digunakan yaitu asuransi berjangka contingent. Tujuan dari penelitian ini adalah untuk membentuk rumusan premi tunggal pada asuransi jiwa berjangka contingent. Penelitian ini dilakukan dengan metode studi literatur. Hasil penelitian iniadalah terbentuknya rumusan premi tunggal bersih pada beberapa kasus asuransi berjangka contingent yaitu untuk dua tertanggung dan tiga tertanggung. Selanjutkanya diberikan ilustrasi pada kedua kasus.
PENYELESAIAN SISTEM PERSAMAAN DIFERENSIAL LINIER MELALUI DIAGONALISASI MATRIKS Edy Sarwo Agus Wibowo; Yuni Yulida; Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 7, No 2 (2013): JURNAL EPSILON VOLUME 7 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (232.824 KB) | DOI: 10.20527/epsilon.v7i2.95

Abstract

This paper discusses the application of matrix diagonalization to determine the general solution of a system of first order homogeneous linear differential equations. Furthermore, if the matrix of the system is not diagonalizable then the solution is determined through the fundamental matrix.
PENERAPAN TEORI KENDALI PADA MASALAH INVENTORI Pardi Affandi; Faisal Faisal; Yuni Yulida
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 6, No 2 (2012): JURNAL EPSILON VOLUME 6 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (373.869 KB) | DOI: 10.20527/epsilon.v6i2.86

Abstract

This paper will examine the application of Control Theory to the problem Inventory, will be developed the first model in which dynamic demand and inventory available all the time. The discussion focused on inventory system analysis nonlinear-shaped production and production costs are treated as a function each inventory level and production level. Then expanded the model first to the next model where the decline in goods is taken into account. Level damage is calculated as a function of time with the amount already available. For both models, optimal control theory will be used to obtain policy optimal control, to obtain optimal results.
SOLUSI DARI PERSAMAAN DIFERENSIAL BIASA LINIER ORDE 2 DALAM BENTUK POLINOMIAL TAYLOR Herlyn Basrina; Yuni Yulida; Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 10, No 2 (2016): JURNAL EPSILON VOLUME 10 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (201.79 KB) | DOI: 10.20527/epsilon.v10i2.35

Abstract

Persamaan diferensial biasa (PDB) adalah persamaan diferensial yang hanya mengandung turunan biasa dari satu atau lebih variabel tak bebas terhadap satu variabel bebas. Persamaan diferensial biasa dapat dikatakan linier jika tidak ada perkalian antara variabel-variabel tak bebas dan turunannya. Solusi persamaan diferensial dapat berupa solusi pendekatan. Salah satu metode untuk menentukan solusi pendekatan dari persamaan diferensial linier adalah metode Taylor-Matrix. Tujuan dari penelitian ini adalah untuk menentukan solusi dari persamaan diferensial biasa linier orde 2 dalam bentuk polinomial Taylor. Penelitian ini dilakukan dengan cara studi literatur dari berbagai sumber, baik buku, artikel maupun jurnal. Hasil dari penelitian ini menunjukkan bahwa solusi dari persamaan diferensial biasa linier orde 2 berbentuk polinomial Taylor. Solusi tersebut diperoleh dengan mengasumsikan setiap fungsi pada persamaan diferensial biasa linier orde 2 dapat dinyatakan dalam bentuk polinomial Taylor, kemudian persamaan diferensial tersebut berserta kondisi yang diberikan diubah dalam bentuk matriks. Setelah itu matriks tersebut dibentuk menjadi matriks diperbesar dan diselesaikan.Kata kunci : Persamaan Diferensial Biasa Linier, Polinomial Taylor.
MODEL EPIDEMIK DUA PENYAKIT DALAM SATU POPULASI Yuni Yulida; Faisal Faisal; Dewi Anggraini
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 5, No 1 (2011): JURNAL EPSILON VOLUME 5 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/epsilon.v5i1.68

Abstract

This paper considers a epidemic model for a spread of two diseases in a population. Fromthe model we study existence and stability of two equilibrium states: an infectious free equilibriumand an endemic equilibrium.
PENGINTEGRALAN MENGGUNAKAN ATURAN SIMPSON UNTUK INTERVAL TITIK YANG TIDAK SAMA Fitriani Fitriani; Akhmad Yusuf; Yuni Yulida
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 13, No 2 (2019): JURNAL EPSILON VOLUME 13 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (313.026 KB) | DOI: 10.20527/epsilon.v13i2.2469

Abstract

In general, numerical integration is carried out at the same point intervals. But in reality, it is sometimes faced with the problem of integrating a function with unequal point intervals. One method to calculating integrals at unequal interval points is the Simpson rule. Based on it, the research aims to form a general formula of numerical integration for unequal interval points and Simpson rule equation by using the Newton interpolation formula with divided differences, also an errors for unequal interval points by integrating the Taylor’s series. The results of this research were obtained a general formula of numerical integration for unequal interval points, general formula of Simpson's 1/3-rule, general formula of the Simpson's 3/8-rule, and an error for each other’s Simpson’s rules.Keywords : Numerical Integration, Simpson's 1/3-Rule, Simpson's 3/8-Rule, Error.
APLIKASI PERKONGRUENAN DALAM MENYELESAIKAN SISTEM PERSAMAAN LINEAR DUA PEUBAH Yuni Yulida; Muhammad Ahsar Karim
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 3, No 2 (2009): JURNAL EPSILON VOLUME 3 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (157.385 KB) | DOI: 10.20527/epsilon.v3i2.40

Abstract

This paper discusses the determination of existention and solution of linearequation system with two variables written as:a x b y ca x b y ca x b y c    2 2 21 1 where x, y are integers, and n n n a ,a ,,a ,b ,b ,,b ,c ,c ,,c 1 2 1 2 1 2 are non-negativeintegers, using the application of linear congruency
Analisis Kestabilan Global Model Epidemik SIRS menggunakan Fungsi Lyapunov Yuni Yulida; Faisal Faisal; Muhammad Ahsar Karim
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 5, No 2 (2011): JURNAL EPSILON VOLUME 5 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (362.693 KB) | DOI: 10.20527/epsilon.v5i2.73

Abstract

This paper presents the SIRS epidemic model. Furthermore, the model is investigated the existence of the equilibrium point, and the global stability of the equilibrium point using the function Lyapunov.