Claim Missing Document
Check
Articles

MODEL SIR DENGAN ADANYA PENGARUH VAKSINASI DAN IMIGRAN Noor Fakhriani; Yuni Yulida; Faisal Faisal
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 9, No 2 (2015): JURNAL EPSILON VOLUME 9 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (203.116 KB) | DOI: 10.20527/epsilon.v9i2.12

Abstract

Some major countries, immigration is a significant factor in the epidemic of a disease. Because the disease follows a predictable pattern of illness, so it can be checked with a standard SIR Model. Kermack and McKendrik SIR models can be developed with the effect of vaccinations and immigrants. The model is built on the assumption, and then determines the vaccination of reproduction number (Rv), determines the equilibrium point on the model, determines the type of stability of the equilibrium point and makes a simulation with the parameter values.
KRITERIA KEKONVERGENAN CAUCHY PADA RUANG METRIK KABUR INTUITIONISTIC Muhammad Ahsar Karim; Faisal Faisal; Yuni Yulida
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 6, No 1 (2012): JURNAL EPSILON VOLUME 6 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (143.296 KB) | DOI: 10.20527/epsilon.v6i1.78

Abstract

In this paper, we construct the Cauchy-convergence criterion in intuitionistic fuzzy metricspace. We start our aim by given the definition of concepts convergence sequence, Cauchysequence, and complete on intuitionistic fuzzy metric space.
APLIKASI METODE DEKOMPOSISI ADOMIAN UNTUK MENENTUKAN FORMULA TRANSFORMASI LAPLACE Aji Wiratama; Yuni Yulida; Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 8, No 2 (2014): JURNAL EPSILON VOLUME 8 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (205.732 KB) | DOI: 10.20527/epsilon.v8i2.110

Abstract

In this paper we will discuss about Laplace transformation formation from solution of first order linear differential equation. One of the approaches to the solution of first-order linear differential equations can apply the Adomian decomposition method. The solution is written in an infinite series. Further, the solution uses the Adomian decomposition method and the exact solution obtained by the integration factor compared to the Laplace transform formula.
ASURANSI JIWA BERJANGKA LAST SURIVOR Yogi Apriyanto; Yuni Yulida; Aprida Siska Lestia
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 12, No 2 (2018): JURNAL EPSILON VOLUME 12 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (206.859 KB) | DOI: 10.20527/epsilon.v12i2.316

Abstract

Dalam asuransi jiwa untuk mendapatkan uang pertanggungan seperti yang dijanjikan dalam polis asuransi, tertanggung haruslah membayar premi kepada penanggung dan penanggung akan memberikan santunan kepada ahli waris jika tertanggung meninggal dunia. Pembayaran premi dapat dilakukan secara sekaligus dalam satu kali pembayaran di awal perjanjian (premi tunggal) atau secara berkala (premi tahunan). Asuransi jiwa menyediakan perlindungan untuk satu orang (single life) maupun dua orang atau lebih (multiple life). Pada asuransi multiple life terdapat dua istilah berdasarkan status kematian dari kumpulan tertanggung yaitu joint life dan last survivor. Asuransi last survivor yaitu asuransi jiwa dimana uang pertanggungan dibayarkan pada ahli waris apabila orang terakhir dari sekelompok tertanggung telah meninggal dunia. Jika tertanggung mengikuti asuransi selama n tahun dan semua tertanggung meninggal dunia dalam jangka waktu tersebut untuk menerima uang pertanggungan, maka jenis asuransi yang digunakan adalah asuransi jiwa berjangka last survivor. Tujuan dari penelitian ini adalah untuk membentuk rumusan premi tahunan pada asuransi jiwa berjangka last survivor untuk tiga tertanggung. Penelitian ini bersifat studi literatur. Hasil dari penelitian ini terbentuknya suatu rumusan premi tahunan asuransi jiwa berjangka last survivor untuk dua orang tertanggung dan untuk tiga orang tertanggung.Kata kunci : Asuransi Jiwa Berjangka, Premi Tahunan, Last Survivor.
PEMBENTUKAN PERSAMAAN VAN DER POL DAN SOLUSI MENGGUNAKAN METODE MULTIPLE SCALE Farohatin Na'imah; Yuni Yulida; Muhammad Ahsar Karim
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 14, No 2 (2020): JURNAL EPSILON VOLUME 14 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (598.033 KB) | DOI: 10.20527/epsilon.v14i2.958

Abstract

Mathematical modeling is one of applied mathematics that explains everyday life in mathematical equations, one example is Van der Pol equation. The Van der Pol equation is an ordinary differential equation derived from the Resistor, Inductor, and Capacitor (RLC) circuit problem. The Van der Pol equation is a nonlinear ordinary differential equations that has a perturbation term. Perturbation is a problem in the system, denoted by ε which has a small value 0<E<1. The presence of perturbation tribe result in difficulty in solving the equation using anlytical methode. One method that can solve the Van der Pol equation is a multiple  scale method. The purpose of this study is to explain the constructions process of  Van der Pol equation, analyze dynamic equations around equilibrium, and determine the solution of Van der Pol equation uses a multiple scale method. From this study it was found that the Van der Pol equation system has one equilibrium. Through stability analysis, the Van der Pol equation system will be stable if E= 0 and  -~<E<=-2. The solution of the Van der Pol equation with the multiple scale method is Keywords: Van der Pol equation, equilibrium, stability, multiple scale. 
METODE DEKOMPOSISI LAPLACE UNTUK MENENTUKAN SOLUSI PERSAMAAN DIFERENSIAL PARSIAL NONLINIER Sinar Ismaya; Yuni Yulida; Naimah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 10, No 1 (2016): JURNAL EPSILON VOLUME 10 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (301.029 KB) | DOI: 10.20527/epsilon.v10i1.56

Abstract

Partial differential equations are grouped into two parts: linear and nonlinear differential equations. Many natural phenomena are modeled in the form of nonlinear partial differential equations, such as K-dV and Burger equations. To be able to explain natural phenomena in the form of nonlinear partial differential equations required approach method which can then be applied to determine the solution of partial differential equation. One of the methods used to determine the solution of nonlinear differential equations is Laplace Decomposition Method which combines Laplace Transformation theory and Adomian Decomposition Method. This research is conducted by using literature method with the following procedure: Assessing Non-Linear Partial Differential Equation, Method Adomian Decomposition, Laplace Transformation and Laplace Decomposition Method; then determine the settlement of the non-linear differential equation with the Laplace Decomposition Method. The result of this research is obtained by solution of nonlinear partial differential equation of Order one by using Laplace decomposition method that is 0nnuu∞ == Σ with (????????, ????????) = ℒ-1????1????????ℒ {???????? (????????, ????????)} + 1????????ℎ (????????) ???? and ???????????????? + 1 (????????, ????????) = ℒ-1????-1????????ℒ {???????????? ???????? (????????, ????????) } -1????????ℒ {????????????????} ????; ????????≥0 and on the two-order nonlinear partial differential equation is 0nnuu = = Σ with ????????0 (????????, ????????) = ℒ-1????1????????2ℒ {???????? (????????, ????????)} + 1????????ℎ (????????) + 1????????2???????? (????????) ???? and ???????????????? + 1 (????????, ????????) = ℒ-1????-1????????2ℒ {???????????? ???????? (????????, ????????)} - 1????????2ℒ {????????????????} ????; ????????≥0
PEMODELAN MATEMATIKA PENYEBARAN COVID-19 DENGAN MODEL SVEIR Gian Septiansyah; Muhammad Ahsar Karim; Yuni Yulida
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(2), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/epsilon.v16i2.6496

Abstract

Coronavirus disease 2019 or also known as Covid-19 is a disease caused by a type of coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or better known as the corona virus. Covid-19 become a pandemic since 2020 and has been widely studied, one of which is in mathematical modeling. In this study, the spread of Covid-19 is modeled using the SVEIR (Susceptible, Vaccination, Exposed, Infected, and Recovered) model. The purpose of this study explains the formation of the Covid-19 SVEIR model, determines the equilibrium point, determines the basic reproduction number, and analyzes the stability of the Covid-19 SVEIR model. The purpose of this study explains the formation of the Covid-19 SVEIR model, determines the equilibrium point, the basic reproduction number, and analyzes the stability of the Covid-19 SVEIR model. The result of this study is to explain the formation of the Covid-19 SVEIR model and obtained two equilibrium points, the disease-free equilibrium point and the endemic equilibrium point. Furthermore, the basic reproduction number  is obtained through the Next Generation Matrix method. The results of the stability analysis at the disease-free equilibrium point were locally asymptotically stable with conditions  while at the endemic equilibrium point local asymptotically stable with conditions . The natural death rate is greater than the effective contact rate. A numerical simulation is presented to show a comparison spread of Covid-19 by providing different levels of vaccine effectiveness using the Runge-Kutta Order method.
MODEL EPIDEMIK PENYAKIT DIARE DENGAN FUNGSI INSIDENSI HOLLING TIPE DUA Yuni Yulida; Aprida Siska Lestia; Riska Fitria; Azkia Khairal Jamil
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(2), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/epsilon.v16i2.6642

Abstract

Model epidemik merupakan salah satu bentuk model matematika di bidang epidemologi. Penyakit diare adalah salah satu penyakit menular yang dapat dicegah melalui treatment. Tujuan penelitian ini adalah untuk menjelaskan terbentuknya model epidemik penyebaran penyakit diare,  menganalisis kestabilan model, dan membuat simulasi numerik. Penelitian ini menggunakan metode linierisasi untuk melinierkan model nonlinier. Metode matriks next generation  untuk menentukan Basic reproduction number  dan metode runge kutta orde empat untuk melakukan simulasi model. Hasil dari penelitian ini, diperoleh model epidemik penyakit diare berbentuk Model SIRT (Susceptible, Infected, Treatment, Recovered) dengan fungsi insidensi Holling Tipe 2. Selanjutnya, diperoleh dua titik ekulibrium dan diperlihatkan bahwa  berperan penting dalam proses penyebaran penyakit. Jika   maka titik ekuilibrium bebas penyakit stabil asimtotik sehingga populasi akan terbebas dari wabah penyakit. Sebaliknya jika  maka titik ekuilibrium endemik stabil asimtotik sehingga penyakit akan selalu ada dalam populasi. Berdasarkan nilai indeks sensitivitas menunjukkan bahwa parameter laju kontak efektif dan laju kelahiran  adalah parameter yang paling sensitif (berbanding lurus) terhadap perubahan nilai . Selanjutnya, simulasi model diberikan untuk memperlihatkan ilustrasi terhadap analisa kestabilan model
Pelatihan Calon Pembina Olimpiade Sains Nasional Bidang Matematika bagi MGMP Matematika SMA Kabupaten Hulu Sungai Tengah Muhammad Ahsar Karim; Yuni Yulida; Azkia Khairal Jamil; Riska Fitria; Gabriel Henokh Gultom; Raihan Nooriman; Rizky Purnama Wulandari
Bubungan Tinggi: Jurnal Pengabdian Masyarakat Vol 4, No 4 (2022)
Publisher : Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/btjpm.v4i4.6245

Abstract

Olimpiade Sains Nasional bidang Matematika tingkat SMA merupakan kompetisi bergengsi bagi siswa SMA/MA di seluruh Indonesia yang memerlukan strategi dan teknik penyelesaian soal-soal yang cenderung tidak standar, pemahaman konsep yang mendalam, dan ide kreatif. Melalui kegiatan PDWM ULM Tahun 2022, tim dosen Program Studi Matematika FMIPA ULM sebagai pelaksana dan MGMP Matematika SMA HST sebagai mitra bekerja sama menyelenggarakan kegiatan pelatihan Olimpiade Sains Nasional bidang Matematika bagi anggota MGMP Matematika SMA Kabupaten Hulu Sungai Tengah. Kegiatan ini bertujuan untuk menambah pengetahuan dan meningkatkan kemampuan anggota MGMP Matematika SMA HST agar dapat melaksanakan pembinaan Olimpiade Sains Nasional bidang Matematika bagi siswa di sekolah masing-masing. Metode yang digunakan dalam kegiatan ini adalah ceramah, diskusi, dan latihan mandiri. Kegiatan dilaksanakan selama dua hari, yaitu hari pertama yang berlangsung secara offline di sekretariat MGMP Matematika SMA HST dan hari kedua yang berlangsung secara online. Hasil evaluasi kegiatan melalui pree-test dan post-test menunjukkan adanya peningkatan signifikan dari pengetahuan dan kemampuan peserta, dengan rata-rata nilai hasil test dari peserta meningkat sebesar 41 poin pada post-test dibandingkan pada pree-test. Maksimum perubahan nilai dari pree test ke post-test adalah 90 poin, sedangkan minimum perubahan nilai dari pree test ke post-test adalah 5 poin. Melalui survey di akhir kegiatan, peserta menyampaikan harapan agar kegiatan pengabdian ini dapat berlanjut, diadakan secara berkala, dan dilaksanakan full offline.The National Science Olympiad in Mathematics at the Senior High School level is a prestigious competition for high school students throughout Indonesia who require strategies and techniques for solving questions that tend to be non-standard, in-depth understanding of concepts and creative ideas. Through the PDWM ULM 2022 program, a team of lecturers from the Program Studi Matematika FMIPA ULM as implementers and the association of MGMP Matematika SMA in Hulu Sungai Tengah Regency as partners collaborated in organizing training for the National Science Olympiad in Mathematics for members of the association. This activity aims to increase knowledge and improve the members' ability so that they can coach the National Science Olympiad in Mathematics for students in their respective schools. The methods used in this activity are lectures, discussions, and independent exercises. The activity was carried out for two days, the first day, which took offline at the MGMP Matematika SMA secretariat, and the second day, which took online. The results of the evaluation of activities through the pre-test and post-test showed a significant increase in the knowledge and abilities of the participants, with the average test score of the participants increasing by 41 points in the post-test compared to the pre-test. The maximum change in value from the pre-test to the post-test is 90 points, while the minimum change in value from the pre-test to the post-test is 5 points. Through a survey at the end of the activity, participants expressed their hope that this training could continue, be held regularly, and be carried out fully offline.
ANALISIS KESTABILAN DAN SOLUSI NUMERIK PADA MODEL SEIR UNTUK PENYAKIT TUBERKULOSIS Azkia Khairal Jamil; Yuni Yulida; Muhammad Ahsar Karim
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 17, No 1 (2023)
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/epsilon.v17i1.6403

Abstract

One of the infectious diseases that can be modelled into the SEIR model is Tuberculosis (TB), this is because TB has a bacterial incubation period, so it is at this time that a person enters the exposed subpopulation. TB is divided into two types, namely latent TB and active TB. This study aims to explain the formation of the SEIR Model for the Spread of Tuberculosis, determine the equilibrium point and Basic Reproductive Numbers on the SEIR Model for the Spread of Tuberculosis, analyze the stability of the SEIR Model for the spread of Tuberculosis at the equilibrium point, and make numerical simulations. The result of this research is the formation of a mathematical model on the spread of Tuberculosis, and from the model obtained two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point. Then the basic reproduction number ( ) was found through the Next Generation Matrix. Furthermore, the stability analysis was carried out at the disease-free equilibrium point and it was found that the local asymptotic stable model with , while at the endemic equilibrium point it was found that the local asymptotic stable model with . Numerical simulations are presented to show numerical solutions and strengthen the explanation of the stability analysis of the model using the fourth-order Runge-Kutta method with parameters that meet the stability requirements.