Claim Missing Document
Check
Articles

Found 31 Documents
Search

Pemanfaatan Teknologi Digital Sebagai Peluang Usaha Untuk Meningkatkan Penjualan Dari Hasil Olahan Limbah Organik Yulindawati Yulindawati; Vilianty Rafida; Amelia Yusnita; Siti Lailiyah; Kusnandar
JURPIKAT (Jurnal Pengabdian Kepada Masyarakat) Vol 5 No 1 (2024)
Publisher : Politeknik Piksi Ganesha Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37339/jurpikat.v5i1.1486

Abstract

Sampah merupakan permasalahan terbesar yang membutuhkan perhatian serius, produksi sampah terbesar dalam keseluruhan produksi sampah terdapat pada sampah organik. Sampah yang tidak dikelola dengan baik akan menimbulkan pencemaran lingkungan, sebaliknya sampah yang dikelola dengan baik akan memberikan peluang usaha yang menguntungkan bagi masyarakat. Purileisa adalah tempat usaha yang memproduksi sampah organik sekaligus tempat edukasi pertanian bagi generasi muda dan masyarakat sekitarnya. sampah organik dapat diolah menjadi eco-enzyme, hasil turunan dari eco-enzyme dapat dipasarkan. Karena dipasarkan secara konvensional dan kurangnya promosi dalam penjualan produk, banyak masayarakat yang tidak mengetahui manfaat turunan dari eco-enzyme ini. Mitra dan masyarakat sekitar telah berkerja sama dengan beberapa dosen STMIK Widya Cipta Dharma memberikan pelatihan bagaiman cara memanfaat limbah organik menjadi peluang usaha yang memberikan keuntungan dengan mempromosikannya dan memasarkannya menggunakan teknologi digital. Metode yang digunakan selama pengabdian adalah ceramah dan memberikan praktek pelatihan secara langsung bagaimana cara menggunakan sosial media dan mempromosikan barang di marketplace.
Internet of Things (Iot) Based Temperature and Humidity Monitoring System in the Chemical Laboratory of the Samarinda Industry Standardization and Research Center Muhammad Awaludin; Andi Yusika Rangan; Amelia Yusnita
TEPIAN Vol. 2 No. 3 (2021): September 2021
Publisher : Politeknik Pertanian Negeri Samarinda

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51967/tepian.v2i3.344

Abstract

Temperature and humidity are important things in a chemical laboratory. By utilizing the internet, operators can remotely monitor laboratory temperatures and humidity with the Internet of Things (IoT) system. The Internet of Things (IoT) system can make it easier for operators to monitor temperature and humidity in chemical laboratories wherever and whenever. DHT11 sensor which functions as a temperature and humidity detector, NodeMCU ESP8266 microcontroller which functions as a data processor so that the DHT11 sensor detection results can be displayed on the monitoring website so that operators can see directly the results of temperature and humidity measurements at the chemical laboratory. This research was conducted at the Samarinda Industrial Research and Standardization Center. Data collection methods used are literature study, interviews, and observations. While the system development method used is prototype. As well as the supporting software used by the Arduino Integrated Development Environment, XAMPP, and Sublime.
PERANCANGAN SISTEM SELEKSI PESERTA PELATIHAN GURU TK DENGAN PENDEKATAN MOORAA Yusnita, Amelia; Yulindawati, Yulindawati; Mayasari, Reny; Susanti, Agustina Nona
DiJITAC : Digital Journal of Information Technology and Communication DiJITAC, Vol 4 No.2, April 2024
Publisher : Universitas Islam Negeri Sultan Aji Muhammad Idris Samarinda

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21093/dijitac.v4i2.8949

Abstract

Penelitian ini mengembangkan sistem pendukung keputusan berbasis web menggunakan metode Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) untuk mengoptimalkan proses pemilihan peserta pelatihan guru di TK Aisyiyah 7 Samarinda. Sistem ini dirancang untuk mengatasi keterbatasan proses manual yang ada, dengan mempertimbangkan empat kriteria utama: pengalaman mengajar, kompetensi akademik, disiplin, dan usia. Menggunakan metode pengembangan Prototyping dan pengumpulan data melalui studi lapangan serta studi pustaka, penelitian ini menghasilkan peringkat peserta berdasarkan perhitungan MOORA yaitu peringkat pertama mendapatkan nilai 0.36428, peringkat kedua 0.16528, dan peringkat ketiga 0.14369. Hasil penelitian menunjukkan bahwa sistem ini dapat mendukung pengambilan keputusan yang lebih objektif, efisien, dan transparan dalam pemilihan peserta pelatihan, dengan tujuan akhir meningkatkan kualitas pendidikan di TK Aisyiyah 7 Samarinda
Prediksi Persediaan Bahan Baku Makanan Menerapkan Algoritma Apriori Data Mining Salmon, Salmon; Azahari, Azahari; Yusnita, Amelia
Building of Informatics, Technology and Science (BITS) Vol 4 No 3 (2022): December 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i3.2563

Abstract

The company's operational activities are inseparable from the supply of raw materials that must be met every day to meet consumer demand. The restaurant uses raw materials, namely vegetables, raw meat which includes beef and chicken, yellow noodles and soun noodles, and the main seasoning. Sales of food at this restaurant quite a lot in a day. This will produce sales data that will continue to grow every day, but this data is useless if it is not processed again to get the knowledge contained in the data. The Apriori algorithm is a method for finding patterns of relationships between one or more items from a dataset. Thus the pile of data that has been collected can produce a sales pattern, from which the customer's buying interest in food can be identified. From the results of research using a data sample of 18 items with a minimum of 20% Support and 50% Confidence, it produces 5 interesting rules with the highest Support reaching 33.33% and the highest Confidence reaching 100%.
Optimisasi Kompetensi Mahasiswa Dalam Analisis dan Perancangan Sistem Informasi Harianto, Kusno; Azahari, Azahari; Yusnita, Amelia
Jurnal Pengabdian Masyarakat Progresif Humanis Brainstorming Vol 7, No 3 (2024): Jurnal Abdimas PHB : Jurnal Pengabdian Masyarakat Progresif Humanis Brainstormin
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/japhb.v7i3.6801

Abstract

Pelatihan Analisis dan Perancangan Sistem Informasi telah diselenggarakan bagi Mahasiswa STMIK Widya Cipta Dharma. Terdapat kesenjangan antara teori yang diajarkan di kelas dan keterampilan praktis yang dibutuhkan di dunia kerja, yang menyebabkan banyak mahasiswa merasa kurang siap menghadapi tantangan nyata. Oleh karena itu, pelatihan yang difokuskan pada analisis dan perancangan sistem informasi diharapkan dapat mengatasi kesenjangan dengan memberikan pengalaman langsung dengan tujuan mempersiapkan mahasiswa STMIK Widya Cipta Dharma agar lebih kompetitif di dunia kerja. Pelatihan ini menerapkan motode yang terdiri dari 3 (tiga) tahapan yaitu : persiapan, pelaksanaan, dan evaluasi. Pada tahap persiapan Unit PIKP STMIK Widya Cipta Dharma yang bertanggung jawab penuh untuk mengkoordinasikan proses pendaftaran dan penyebaran informasi. Pada tahap pelaksanaan materi yang disampaikan selama pelatihan berfokus pada penggunaan Unified Modeling Language (UML) dengan aplikasi Rational Rose. Peserta pelatihan, yang terdiri dari 8 mahasiswa semester akhir, diwajibkan untuk menyelesaikan dan mempraktekkan langsung membuat perancangan sistem sesuai dengan contoh kasus dan final project yang diberikan. Hasil evaluasi dinilai dari aspek kehadiran 30%, submisi tugas pertemuan 30% dan final project 40%. Rata-rata nilai yang diperoleh mahasiswa dari hasil evaluasi adalah 84.5 dengan keterangan baik sekali. Kendala yang dihadapi selama pelatihan adalah keterbatasan ruangan yang kurang mampu menampung peserta yang cukup banyak. Secara keseluruhan, pelatihan ini bertujuan untuk membekali mahasiswa dengan keterampilan dan kompetensi dalam menganalisis dan merancang sistem informasi yang dibutuhkan di dunia industri kerja.
PENGGUNAAN METODE PERBANDINGAN EKSPONENSIAL (MPE) UNTUK MENENTUKAN PRODUK UNGGULAN DI UKM XYZ Yusnita, Amelia; Mayasari, Reny; Yulindawati, Yulindawati; Patrianto, Wahyu
DiJITAC : Digital Journal of Information Technology and Communication DiJITAC, Vol 5 No.1, Oktober 2024
Publisher : Universitas Islam Negeri Sultan Aji Muhammad Idris Samarinda

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21093/dijitac.v5i1.9854

Abstract

Penelitian ini mengkaji penerapan metode perbandingan eksponensial (MPE) dalam sistem pendukung keputusan (SPK) untuk menentukan produk unggulan di Usaha Kecil Menengah XYZ. Usaha ini memiliki peran penting dalam perekonomian, namun Usaha ini sering menghadapi tantangan dalam menetapkan produk unggulan. Dengan menggunakan MPE, penelitian ini berfokus pada pembobotan dan perbandingan alternatif produk berdasarkan kriteria bahan baku, kualitas, penjualan, dan harga. Data dikumpulkan dan diolah menggunakan pendekatan kuantitatif untuk menghasilkan rekomendasi produk unggulan yang lebih objektif dan akurat. Hasil penelitian menunjukkan bahwa produk Amplang Cita Rasa memperoleh nilai tertinggi yaitu 26.00, produk ini menjadikan pilihan terbaik menurut metode MPE. Pendekatan kuantitatif memberikan solusi berbasis teknologi untuk pengambilan keputusan yang lebih efisien, pengujian pada sistem ini menggunakan metode blackbox yang terfokus pada inputan ke sistem dan keluaran yang dihasilkan. Hasil dari SPK yang dirancang menunjukan bahwa MPE dapat membantu Usaha Kecil Menengah dalam pengambilan keputusan strategis lebih cepat dan akurat.
FAKTOR-FAKTOR YANG MEMPENGARUHI KETERLAMBATAN PROYEK PEMBANGUNAN BOX CULVERT JEMBATAN JALAN SUDIRMAN DAN JALAN AGUSSALIM KECAMATAN BANGKINANG KOTA Febryanto, Febryanto; Azriadi, Emon; Adrian, Nurul; Yusnita, Amelia; Alenya, Nia; Fadri, Roy
Ensiklopedia Research and Community Service Review Vol 4, No 1 (2024): Vol. 4 No. 1 Oktober 2024
Publisher : Lembaga Penelitian dan Penerbitan Hasil Penelitian Ensiklopedia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33559/err.v4i1.2975

Abstract

Bridges are structures built to connect transportation activities due to obstacles such as rivers, lakes, swamps and other obstacles. As part of drainage systems and bridge infrastructure, box culverts help transport and control water flow. In implementing bridge construction projects there are several tendencies that influence performance, one of which is time management. The aim of this research is to identify the components that influence the length of time the box culvert bridge construction project on Jalan Sudirman and Jalan Agussalim, Bangkinang City subdistrict lasts. This research adopts a descriptive quantitative approach, a quantitative method rooted in the philosophy of positivism was chosen because it allows the collection of numerical data in a systematic and structured manner. Data collection was carried out through questionnaire data. The results of the research show that the main components causing the box culvert bridge construction project on Jalan Sudirman and Jalan Agussalim, Bangkinang Kota subdistrict to be delayed are the lack of expertise and skills as well as work motivation for workers in the field with a respondent result of 54% lack of expertise and skills and desire to work among workers in the field, according to 54% of respondents, the owner's work plan statement often changes based on the results of 51% of respondents and material accuracy with a respondent result of 51%.Keywords: Time Management, Box Culvert, Construction Project Delays
Application of Dijkstra’s Algorithm in Searching the Shortest Path of Coal Production Locations Amelia Yusnita; Siti Lailiyah; I Gede Adi Merta
JTKSI (Jurnal Teknologi Komputer dan Sistem Informasi) Vol 4, No 1 (2021): JTKSI
Publisher : Institut Bakti Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56327/jtksi.v4i1.970

Abstract

To exploit coal the company needs to hold discussions and it takes time to reach the location, each coordinate point traveled has a different distance, the shorter the distance, the faster the time it will take. In this problem the company does not yet have hauling distance data at each coordinate point, the solution to this problem is how to build an application for determining coal production points using the dijkstra algorithm. There are three stages used to collect data, namely, literature study, observation, and interviews. The development of the system used to build this application uses the prototype method whose stages consist of communication, rapid planning, rapid design modeling using flowcharts, prototype formation, and submission of the customer system in the form of an application that analyzes the determination of PIT location distances using algorithms dijkstra, the output of this application is a description of the track map display, the destination location and its node points with detailed routes with a distance of kilometers. At this stage, the application is tested using the blackbox test, by checking whether the buttons can function properly and the expected result from this test is a success.
Application of Naive Bayes Algorithm for Analysis of User Reviews on Mobile Legends Game: Bang Bang Roba, Al-Muchlis Syachrul Ramadani; Lailiyah, Siti; Yusnita, Amelia
J-INTECH ( Journal of Information and Technology) Vol 13 No 01 (2025): J-Intech : Journal of Information and Technology
Publisher : LPPM STIKI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32664/j-intech.v13i01.1881

Abstract

Mobile Legends: Bang Bang is a highly popular MOBA game, especially among students, which generates a large volume of user reviews on the Google Play Store. These reviews provide a valuable data source for understanding user sentiment. This study conducts sentiment analysis on user reviews using three variants of the Naïve Bayes algorithm: BernoulliNB, GaussianNB, and MultinomialNB. From an initial 5,000 reviews collected via web scraping using Python, 4,428 reviews were used after neutral reviews were removed to focus solely on positive and negative sentiments.The preprocessing steps included case folding, word normalization, tokenization, stopword removal, and stemming. Sentiment labeling was carried out using a lexicon-based approach, comparing the frequency of positive and negative words in each review. The dataset was split in an 80:20 ratio for training and testing.The results show that MultinomialNB achieved the highest accuracy at 75%, followed by BernoulliNB with 74%, and GaussianNB with 50%. MultinomialNB demonstrated superior performance in detecting positive sentiments, while BernoulliNB offered more balanced results. GaussianNB performed poorly due to its assumption of normally distributed continuous data, which is unsuitable for text classification. This study concludes that Multinomial Naïve Bayes is the most effective model for sentiment analysis of user reviews when working with word frequency-based representations.
Application of K-Nearest Neighbor Algorithm For Sentiment Analysis On Free Fire Online Game Based On Google Play Store Reviews Raya, Dimas; Yusnita, Amelia; Haristyawan, Ivan
J-INTECH ( Journal of Information and Technology) Vol 13 No 01 (2025): J-Intech : Journal of Information and Technology
Publisher : LPPM STIKI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32664/j-intech.v13i01.1882

Abstract

The swift expansion of the digital gaming sector, especially online games like Free Fire, has produced extensive user feedback via platforms like the Google Play Store. This research utilizes the K-Nearest Neighbor (KNN) algorithm to conduct sentiment analysis on 5,000 user reviews, with the goal of assessing its classification effectiveness. Following preprocessing (case folding, Text Cleaning, tokenization, stopword Removal, stemming), the data was converted using TF-IDF and balanced through SMOTE. Experimental findings indicate that KNN attained a peak accuracy of merely 36.53% (at k = 14), reflecting weak performance with high-dimensional textual data. In contrast, Logistic Regression attained a notably higher accuracy of 88%, showcasing its dominance for this task. The results offer perspectives for game developers to assess user feelings and emphasize the significance of selecting suitable machine learning models. Future research should investigate advanced classifiers like SVM, Random Forest, or deep learning methods to enhance accuracy.