Claim Missing Document
Check
Articles

Found 35 Documents
Search

Analisis Kepuasan Pegawai Terhadap Aplikasi E-KGB Pada Badan Kepegawaian Daerah Menggunakan Metode End User Computing Satisfaction Paul, Debora; Yusnita, Amelia; Pahrudin, Pajar
RIGGS: Journal of Artificial Intelligence and Digital Business Vol. 4 No. 2 (2025): Mei - Juli
Publisher : Prodi Bisnis Digital Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/riggs.v4i2.456

Abstract

Penelitian ini bertujuan untuk menganalisis tingkat kepuasan pegawai terhadap aplikasi e-KGB (Elektronik Kenaikan Gaji Berkala) pada Badan Kepegawaian Daerah (BKD) Provinsi Kalimantan Timur Menggunakan Metode End User Computing Satisfaction (EUCS). Aplikasi e-KGB dirancang untuk mempermudah proses administrasi kenaikan gaji berkala bagi pegawai di BKD Kaltim. Namun, penerimaan dan kepuasan pegawai terhadap aplikasi ini masih perlu dievaluasi untuk memastikan keberhasilan implementasi dan memberikan dasar bagi perbaikan aplikasi di masa depan. Data diperoleh melalui penyebaran kuesioner kepada pegawai yang menggunakan aplikasi e-KGB di BKD Provinsi Kalimantan Timur. Responden diminta untuk memberikan penilaian terhadap masing-masing dimensi EUCS berdasarkan pengalaman mereka dalam menggunakan aplikasi tersebut. yang mengukur kepuasan pengguna berdasarkan lima dimensi EUCS, yaitu Content, Accuracy, Format, Ease of Use dan Timeliness. Hasil penelitian menunjukkan bahwa sebagian besar pegawai merasa puas dengan aplikasi e-KGB, terutama terkait kemudahan penggunaan dan kualitas informasi yang diberikan.
Analisis Pola Penjualan Obat di Apotek Menggunakan Algoritma Apriori Untuk Optimalisasi Stok dan Penjualan Yulindawati, Yulindawati; Yusnita, Amelia; Mayasari, Renni; Melano, M Erick
TIN: Terapan Informatika Nusantara Vol 5 No 2 (2024): July 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/tin.v5i2.5407

Abstract

This research aims to identify product sales patterns at Teluk Bayur Pharmacy to optimize stock management and increase sales by using data mining techniques, especially the Apriori Algorithm. Pharmacies are very instrumental in providing drug-related information and are a form of retail trade that sells medicines at more affordable prices compared to hospital services. However, Teluk Bayur Pharmacy often faces difficulties in managing stock, analyzing product sales patterns and consumer behavior, which causes problems of over stock or under stock. Through the application of Association Rule Mining using the Apriori Algorithm, this research analyzes the correlation between products to find frequent purchase patterns. The methods used include literature study, data collection, data preprocessing, application of Apriori Algorithm, evaluation and interpretation of results, and application of conclusions and recommendations. To analyze sales patterns, the data collected exceeded 100 entries, and 12 transactions were selected that represented the most sales each month. The results of testing the analysis utilizing tanagra 1.4.41 software, by setting a minimum support of 40% and a minimum confidence of 70%, from the results of research and testing show that products that are often purchased together by customers are masks, vegeta, and antimo with a confidence value above 70%. The findings are expected to provide insight for Teluk Bayur Pharmacy in understanding consumer behavior and identifying new sales opportunities.
Clustering the Economic Conditions of Various Countries From 2010-2023 by Conducting A Comparative Analysis of the K-Means and K-Medoids Algorithms Yunita, Yunita; Ekawati, Hanifah; Yusnita, Amelia
Building of Informatics, Technology and Science (BITS) Vol 7 No 1 (2025): June (2025)
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i1.7330

Abstract

Understanding the similarities and differences in economic conditions across countries is crucial for various stakeholders. This research investigates the global economic landscape by clustering countries based on their economic indicators, including GDP, inflation rate, unemployment rate, and economic growth, spanning the period of 2010 to 2023. This timeframe encompasses significant global economic events, making it pertinent for analysis. The study employs and compares two prominent clustering algorithms: K-Means and K-Medoids, to identify groups of countries exhibiting similar economic patterns. Utilizing secondary data from Kaggle encompassing 19 countries, the research assesses the ability of each algorithm to delineate meaningful economic clusters. The K-Means algorithm, with a determined optimal number of four clusters, demonstrated a reasonably good cluster separation and moderate internal cohesion, evidenced by a Silhouette Coefficient of 0.58 and a Davies-Bouldin Index of 0.63. In contrast, the K-Medoids algorithm yielded a distinct clustering structure with a lower Silhouette Coefficient (0.26) and a higher Davies-Bouldin Index (1.16), suggesting less distinct cluster separation and potential sensitivity to data characteristics. This comparative analysis provides insights into the applicability and performance of K-Means and K-Medoids in discerning global economic structures, contributing to a deeper understanding of the world economic map and the utility of clustering techniques in economic data analysis.
REKOMENDASI PEMILIHAN JUDUL TUGAS AKHIR MENGGUNAKAN METODE NAÏVE BAYES Yulindawati, Yulindawati; Lailiyah, Siti; Yusnita, Amelia; Hafifah, A.
Journal of Information System Management (JOISM) Vol. 5 No. 2 (2024): Januari
Publisher : Universitas Amikom Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24076/joism.2024v5i2.1383

Abstract

Syarat untuk menjadi sarjana adalah telah menyelesaikan tugas akhir dengan membuat suatu artikel ilmiah dalam bentuk buku atau yang disebut skripsi. Dalam mencari referensi disarankan oleh program studi khusunya program studi teknik informatika adalah sesuai dengan kemampuan dan minat mahasiswa. Vaktor yang menyebabkan mahasiswa tidak lulus tepat waktu adalah mahasiswa kesulitan dalam menentukan topik tugas akhir yang disebabkan oleh kurangnya pengetahuan dari matakuliah pendukung. Berdasarkan hal tersebut dibuatlah sistem yang bersifat rekomendasi pemilihan topik tugas akhir. Sistem rekomendasi menggunakan algoritma naïve bayes dan menggunakan tahapan data mining. metode pengembangannya adalah waterfall, penelitian mengunakan data mahasiswa program studi teknik informatika angkatan 2014-2018, sebanyak 240 data yang digunakan sebagai perhitungan, dari hasil pengelompokan berdasarkan buku kurikulum program studi teknik informatika didapat 7 atribut mata kuliah untuk dijadikan sebagai variabel. Pada tahap desain, alur sistem digambarkan dengan menggunakan flowchart. Hasil implementasinya dalam bentuk aplikasi dimana mahasiswa dapat melakukan penginputan nilai matakuliah yang telah ditempuh, proses perhitungan probabilitas akan menampilkan nilai tertinggi yang akan digunakan sebagai rekomendasi topik tugas akhir.
Penerapan Algoritma Support Vector Machine (SVM) dalam Analisis Sentimen Mahasiswa Terhadap Sistem Layanan KPST STMIK Widya Cipta Dharma Maulana Umar; Pitrasacha Adytia; Amelia Yusnita
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 8, No 3 (2025): Juni 2025
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v8i3.9189

Abstract

Abstrak - Sistem Layanan KPST di STMIK Widya Cipta Dharma menghadapi tantangan disparitas kepuasan mahasiswa, terutama dalam aspek administratif dan bimbingan akademik. Tujuan: Penelitian ini bertujuan untuk menganalisis sentimen mahasiswa secara komprehensif menggunakan algoritma Support Vector Machine (SVM) dengan dataset aktual, mengoptimasi hyperparameter, dan mengatasi ketidakseimbangan data. Metode: Data dikumpulkan melalui survei terstruktur (N=150 responden), diproses dengan TF-IDF (ngram_range=(1,3), max_features=1500), dan diklasifikasi menggunakan SVM dengan teknik GridSearchCV untuk optimasi parameter (C=10, gamma=0.01, kernel=RBF). SMOTE diterapkan untuk menangani ketidakseimbangan kelas. Hasil: Model mencapai akurasi 82.3% dengan presisi 80.1% pada kelas minoritas (negatif). Analisis mengungkap sentimen positif dominan (68%) pada kecepatan respons admin (skor 4.0), namun isu kritis teridentifikasi di antarmuka pengguna (32% komentar negatif) dan kualitas bimbingan (skor 3.5). Kesimpulan: Penelitian ini membuktikan efektivitas SVM dalam analisis sentimen akademik, dengan rekomendasi spesifik untuk redesain UI/UX dan integrasi sistem notifikasi otomatis. Temuan juga menyoroti pentingnya penanganan ketidakseimbangan data dalam klasifikasi teks.Kata kunci: Analisis Sentimen; Support Vector Machine (SVM); Sistem Layanan KPST; Ketidakseimbangan Data; Optimasi Hyperparameter; UI/UX Akademik.                            Abstract - The KPST Service System at STMIK Widya Cipta Dharma faces challenges in student satisfaction disparities, particularly in administrative and academic guidance aspects. Objective: This study aims to comprehensively analyze student sentiment using the Support Vector Machine (SVM) algorithm with real-world datasets, optimizing hyperparameters and addressing data imbalance. Method: Data was collected through structured surveys (N=150 respondents), processed with TF-IDF (ngram_range=(1,3), max_features=1500), and classified using SVM with GridSearchCV for parameter optimization (C=10, gamma=0.01, kernel=RBF). SMOTE was applied to handle class imbalance. Results: The model achieved 82.3% accuracy with 80.1% precision for the minority class (negative). Analysis revealed dominant positive sentiment (68%) on administrative response (score 4.0), but critical issues were identified in user interface (32% negative feedback) and academic guidance quality (score 3.5). Conclusion: This research demonstrates SVM's effectiveness in academic sentiment analysis, with specific recommendations for UI/UX redesign and automated notification system integration. Findings also highlight the importance of addressing data imbalance in text classification.Keywords: Sentiment Analysis; Support Vector Machine (SVM); KPST Service System; Data Imbalance; Hyperparameter Tuning; Academic UI/UX.