Claim Missing Document
Check
Articles

Found 27 Documents
Search

Aplikasi Himpunan Kritis Pada Pelabelan Graf Caterpillar Teratur Triyani Triyani; Siti Rahmah Nurshiami; Mutia Nur Estri
Jurnal Matematika Integratif Vol 9, No 1: April, 2013
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (350.637 KB) | DOI: 10.24198/jmi.v9.n1.10197.53-60

Abstract

Graf yang dapat dilabeli dengan pelabelan Total Super Sisi Ajaib (TSSA) disebut graf super sisi ajaib. Graf Caterpillar Teratur
Karakteristik Himpunan Kritis dalam Pelabelan TSA pada Graf Pohon Triyani Triyani; Siti Rahmah Nurshiamil; Ari Wardayani; Irham Taufiq
Jurnal Matematika Integratif Vol 12, No 1: April, 2016
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (432.647 KB) | DOI: 10.24198/jmi.v12.n1.10284.51-58

Abstract

Sebuah himpunan kritis dalam pelabelan Total Sisi Ajaib (TSA),  pada graf G adalah subhimpunan label sedemikian sehingga label tersebut membangun pelabelan TSA secara tunggal. Konsep himpunan kritis pada pelabelan graf ini merupakan pengembangan teori dari himpunan kritis dalam bujur sangkar latin yang dikemukakan oleh Cooper dkk (1994). Artikel ini bertujuan menginvestigasi karakteristik himpunan kritis dalam pelabelan TSA pada graf pohon. Hasil penelitian menunjukkan bahwa jika G adalah graf pohon, maka himpunan kritis dengan ukuran minimal dalam pelabelan TSA pada G sama dengan banyaknya daun di G.Kata Kunci : himpunan kritis minimal, pelabelan TSA, graf TSA
Pelatihan GeoGebra untuk Mata Pelajaran Geometri di MGMP Matematika SMA Kabupaten Purbalingga Sri Maryani; Nunung Nurhayati; Siti Rahmah Nurshiami; Renny; Rina Reorita
AMMA : Jurnal Pengabdian Masyarakat Vol. 1 No. 05 (2022): AMMA : Jurnal Pengabdian Masyarakat
Publisher : CV. Multi Kreasi Media

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Teachers as educators are required to be able to keep up with technological advances, this is in line with the Republic of Indonesia Law no. 14 of 2005 in term of improving the professional competence of teachers. The Covid-19 pandemic has brought changes in term of interacting with technology. It has a positive impact on teachers as educators. For mathematics teachers, the development of technology has become a strategy to introduce a mathematical applications not only to understand but also to obtain the applications. One of the applications that strongly support learning mathematics is the GeoGebra application. This application can provide a mathematical visualization so that teachers as educators and students as learners will more easily to understand mathematical topic more deeply. Some mathematical subjects require visualization to make it easier to understand, for example geometry subject especially in space. This subject is introduced at the beginning in senior high school level. This subject need reasoning, visualization, and imagination to understand the geometric shape. GeoGebra application can improve the reasoning and imagination of students. This community service team provides GeoGebra training for high school mathematics group which called MGMP of Mathematics in Purbalingga Regency especially in Geometry subject. First of all, MGMP of Mathematics in Purbalingga Regency were given a pre-test and post-test regarding their initial knowledge of GeoGebra from 35 trainee of mathematics teachers in Purbalingga Regency. The results of pre-test showed that 66,2% of mathematics teachers were able to correctly answer the questions, while the results of the post-test showed that 83,71% of mathematics teachers were able to correctly answer the same questions. Based on these data, it can be seen that GeoGebra training has increase the ability of mathematics teachers to understand the GeoGebra for geometry subjects by 17,5%.
GeoGebra Sebagai Aplikasi Visual untuk Topik Turunan dan Integral di MGMP Matematika SMA Kabupaten Purbalingga Sri Maryani; Nunung Nurhayati; Siti Rahmah Nurshiami; Renny Renny; Rina Reorita
AMMA : Jurnal Pengabdian Masyarakat Vol. 1 No. 12 (2023): AMMA : Jurnal Pengabdian Masyarakat
Publisher : CV. Multi Kreasi Media

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

GeoGebra is an interactive geometry software that supports the implementation of mathematics learning. With this software, it is hoped that students' interest in getting to know mathematics more closely will increase through mathematical experiments. GeoGebra can be used not only by students but can also be used by teachers as educators. At present teachers are required to be able to keep up with technological advances, this is in line with RI Law no. 14 of 2005 in terms of increasing the professional competence of teachers. The Covid-19 pandemic has brought changes in terms of interacting with technology. This has a positive impact on teachers as educators. GeoGebra for math teachers is a technological innovation that strongly supports mathematics learning. The GeoGebra application can provide mathematical visualization so that teachers as educators and students as students will find it easier to understand deeper mathematical material. Several math topics exist in senior secondary schools and require visualization to make them easier to understand, including derivative and integral material. Mathematics which is introduced at the high school level (SMA) requires reasoning, visualization and imagination in understanding the concepts of limits and derivatives. This community service (PKM) provides GeoGebra training to high school Mathematics MGMP teachers in Purbalingga Regency for derivative and integral topics. First, high school mathematics MGMP teachers in Purbalingga district were given a pre-test and post-test regarding initial knowledge of derivatives and integrals from 24 representatives of mathematics teachers in Purbalingga district. The results of the pre-test showed that 60.83% of mathematics teachers could answer each point correctly, while the results of the post-test showed an increase in teachers' understanding of derivative and integral topics, namely 80.78% of mathematics teachers were able to answer each point correctly. questions asked. Based on these data, it can be seen that the GeoGebra training provided during this PKM increased the ability of mathematics teachers to understand GeoGebra for derivative and integral topics by 19.95%.
PENENTUAN KRITERIA PENGHENTIAN ITERASI PADA ALGORITMA STROBERI Mutia Nur Estri; Siti Rahmah Nurshiami; Rina Reorita; Muhammad Okky Ibrohim
Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 10 No 1 (2018): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2018.10.1.2834

Abstract

This paper discusses the application of two types of stopping criterion on the strawberry algorithm, which are stopping criteria based on iterative error and Cauchy criterion. Furthermore, the strawberry algorithm program is simulated on the optimization problem with the objective function is quadratic function. The simulation results on optimization problem with the objective function is quadratic function show that strawberry algorithm with stopping criterion based on Cauchy criterion has the best performance, when compared with stopping criterion based on iterative error and without stopping criterion
PELABELAN FUZZY PADA GRAF Siti Rahmah Nurshiami; Suroto Suroto; Fajar Hoeruddin
Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 6 No 1 (2014): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2014.6.1.2898

Abstract

This paper discusses fuzzy labeling graph and its properties. The properties discussed are fuzzy labeling subgraph, union graph, and fuzzy magic graph. The results showed that the strength of connectedness for pair of vertices in a graph with fuzzy labeling is always greater than or equal to the strength of connectedness for pair of vertices in its subgraph. In addition, union of two graph with fuzzy labeling will form a graph with fuzzy labeling. Meanwhile, on magic labeling there is always a fuzzy bridge on fuzzy magic graph.
KARAKTERISTIK NILAI EIGEN DARI MATRIKS LAPLACIAN Siti Rahmah Nurshiami; Mutia Nur Estri; Noor Rahmah Sofiyati
Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP) Vol 3 No 1 (2011): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2011.3.1.2972

Abstract

Matriks Laplacian dari suatu graf G adalah matriks diagonal dikurangi dengan matriks ketetanggaan. Paper ini membahas karakteristik nilai eigen dari matriks Laplacian dan hubungan nilai eigen matriks Laplacian dengan nilai eigen matriks ketetanggaan dari graf reguler.
KARAKTERISTIK SEGITIGA LUCAS Nurshiami, Siti Rahmah; Wardayani, Ari; Setiani, Kana Hasmi
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2019): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.1.1933

Abstract

ABSTRACT. Lucas triangle is an array of coeficients of a polynomial forming a pattern which is similar to Pascal triangle. This research studies Lucas triangle and its properties. The research results show that every row in Lucas triangle is begun by the number 1 and is ended by the number 2, the sum of the first n terms of number of 1th column is equal to the number at (n+1)th row, 2nd column. Besides, the number at nth row and (n-2)th column of Lucas triangle is (n-1)^2 for n≥2, the sum of the first n terms of number of jth column is equal to the number at (n+1)th row, (j+1)^th column for j≥1. The number of Lucas triangle is the sum of two number terms in preceded row, that is the number at (n-1)th row, (j-1)^th and the number at (n-1)th row, j^th. Then, the sum of coefficients of each n^th row of Lucas triangle is .Keywords: Pascal triangle, Lucas number, Lucas triangle. ABSTRAK. Segitiga Lucas merupakan susunan koefisien-koefisien dari suatu polinomial yang disusun membentuk pola segitiga memyerupai segitiga Pascal. Penelitian ini mengkaji segitiga Lucas dan karakteristik dari segitiga Lucas. Hasil penelitian menunjukkan bahwa, setiap baris pada segitiga Lucas diawali dengan angka 1 dan diakhiri dengan angka 2, jumlah dari n suku bilangan pertama pada kolom ke-1 sama dengan bilangan pada baris ke- kolom ke-2. Selain itu, bilangan pada baris ke- kolom ke- pada segitiga Lucas adalah untuk , jumlah n suku bilangan pertama pada kolom ke-j sama dengan bilangan pada baris ke- kolom ke- untuk . Bilangan pada segitiga Lucas merupakan penjumlahan dari dua suku bilangan pada baris sebelumnya, yaitu bilangan pada baris ke- kolom ke- dan bilangan pada baris ke- kolom ke-j. Kemudian, jumlah koefisien setiap baris ke-n pada segitiga Lucas adalah .Kata Kunci: Segitiga Pascal, Bilangan Lucas, Segitiga Lucas
APLIKASI TRAVELLING SALESMAN PROBLEM PADA PENGEDROPAN BARANG DI ANJUNGAN MENGGUNAKAN METODE INSERTION Dewi, Priska Sari; Triyani, Triyani; Nurshiami, Siti Rahmah
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 12 No 2 (2020): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2020.12.2.3617

Abstract

ABSTRACT. Travelling Salesman Problem (TSP) is a problem to find the shortest path a salesman visits all the cities exactly once, and returns to the starting city. In this reseacrh, the methods for TSP used are the nearest insertion method, the cheapest insertion method, and the farthest insertion method. The program for deciding the minimum TSP from three insertion methods was created with the help of the function of Software R. The TSP using three insertion methods do not always have the same weight and route.Key words: Travelling Salesman Problem, Nearest Insertion Method, Cheapest Insertion Method, Farthest Insertion Method, and Software R. ABSTRAK. Travelling Salesman Problem (TSP) merupakan permasalahan mencari lintasan terpendek seorang salesman harus mengunjungi semua kota yang akan dituju tepat satu kali, dan kembali ke kota awal. Pada penelitian ini, penyelesaian TSP menggunakan metode nearest insertion, metode cheapest insertion, dan metode farthest insertion. Program minimum TSP dari ketiga metode dibuat dengan bantuan fungsi Software R. Hasil TSP dengan menggunakan tiga metode insertion tidak selalu menghasilkan bobot dan rute lintasan yang sama namun bergantung pada data yang digunakan.Kata kunci: Travelling Salesman Problem, Metode Nearest Insertion, Metode Cheapest Insertion, Metode Farthest Insertion, dan Software R.
IMPLEMENTASI PENYEDERHANAAN FUNGSI BOOLE DENGAN METODE QUINE McCLUSKEY Hidayat, Alfatah; Nurshiami, Siti Rahmah; Mashuri, Mashuri
Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 13 No 2 (2021): Jurnal Ilmiah Matematika dan Pendidikan Matematika (JMP)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jmp.2021.13.2.4873

Abstract

ABSTRACT. Quine McCluskey method is one method that can be used to simplify the Boolean function. The Quine McCluskey method has several advantages including having simpler, more systematic steps than other methods and it is easier to simplify the Boolean function with a large number of variables. This study discusses the design of a Boolean function simplification program for the Quine McCluskey method using Visual Basic 6.0. The resulting program can simplify the Boolean function with many variables less than equal to 26 variables and able to simplify the Boolean function in the form of Sum of Product (SOP), Product of Sum (POS), and don't care.Keywords: Boolean function, Boolean function simplification, Quine McCluskey, Visual Basic 6.0, Sum of Product, Product of Sum, don’t care. ABSTRAK. Metode Quine McCluskey merupakan salah satu metode yang dapat digunakan untuk menyederhanakan fungsi Boole. Metode Quine McCluskey memiliki beberapa keunggulan diantaranya memiliki langkah-langkah penyederhanaan yang lebih sistematis dibanding metode lain dan lebih mudah untuk menyederhanakan fungsi Boole dengan jumlah variabel besar. Penelitian ini membahas perancangan program penyederhanaan fungsi Boole metode Quine McCluskey menggunakan Visual Basic 6.0. Program yang dihasilkan mampu menyederhanakan fungsi Boole dengan jumlah variabel kurang dari sama dengan 26 variabel dan mampu menyederhanakan fungsi Boole dalam bentuk Sum of Product (SOP), Product of Sum (POS), maupun dengan kondisi don’t care. Kata kunci: fungsi Boole, penyederhanaan fungsi Boole, Quine McCluskey, Visual Basic 6.0, Sum of Product, Product of Sum, don’t care.