Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Jurnal Buana Informatika

Segmentasi Variasi Pencahayaan Citra Tomat Menggunakan Marker Controlled Watershed dan Arimoto Entropy untuk Perbaikan Citra Suastika Yulia Riska; R. V. Hari Ginardi; Nanik Suciati
Jurnal Buana Informatika Vol. 6 No. 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i3.434

Abstract

Abstract. Tomatoes image acquisition in outdoors condition results in an image that cannot be processed because of lighting variation on the glossy surface. Lighting variation is one of the problems in image processing because the resulting color values on tomatoes is lost from the affected area due to lighting variation. This research is meant to improve the image of tomatoes with lighting variations in the preprocessing stage. Segmentation methods proposed to detect and eliminate lighting variation is marker-controlled watershed with Arimoto entropy. After eliminating the detected area with lighting, tomatoes image are improved in three ways, namely by applying RGB average, searching the value of pixels with pixels index, and using a moving window with various kernel sizes. The error segmentation of the proposed method is by 36.67%, which better than the previous method. The best results tomato image enhancement is by using a moving window with a kernel size 15x15.Keywords: arimoto entropy, image enhancement, marker controlled watershed, preprocessing, segmentation.  Abstrak. Pengambilan citra tomat di luar ruangan mengakibatkan citra tidak dapat langsung diproses karena memiliki variasi pencahayaan pada permukaannya yang glossy. Variasi pencahayaan merupakan salah satu masalah dalam pemrosesan citra tomat karena mengakibatkan hilangnya nilai warna yang dimiliki area yang terkena variasi pencahayaan. Tujuan penelitian ini adalah untuk memperbaiki citra tomat yang terdeteksi memiliki variasi pencahayaan pada tahap preprocessing. Metode segmetasi yang diusulkan pada penelitian ini untuk mendeteksi dan menghilangkan area variasi pencahayaan adalah marker controlled watershed dengan arimoto entropy. Setelah menghilangkan area yang terdeteksi memiliki pencahayaan, citra tomat diperbaiki dengan tiga cara, yaitu dengan rata-rata RGB tomat, pencarian nilai piksel dengan indeks piksel, dan menggunakan moving window dengan berbagai ukuran kernel. Eror segmentasi dari metode yang diusulkan sebesar 36,67%, yaitu lebih baik dari pada metode sebelumnya. Hasil perbaikan citra secara visual menunjukkan hasil yang paling baik dengan menerapkan perbaikan citra menggunakan moving window dengan ukuran kernel 15x15.Kata Kunci: arimoto entropy, marker controlled watershed, perbaikan citra, preprosesing, segmentasi.
Modifikasi Ant Colony Optimization Berdasarkan Gradient Untuk Deteksi Tepi Citra Febri Liantoni; Nanik Suciati; Chastine Fatichah
Jurnal Buana Informatika Vol. 6 No. 3 (2015): Jurnal Buana Informatika Volume 6 Nomor 3 Juli 2015
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v6i3.435

Abstract

Abstract. Ant Colony Optimization (ACO) is an optimization algorithm which can be used for image edge detection. In traditional ACO, the initial ant are randomly distributed. This condition can cause an imbalance ants distribution. Based on this problem, a modified ant distribution in ACO is proposed to optimize the deployment of ant based gradient. Gradient value is used to determine the placement of the ants. Ants are not distributed randomly, but are placed in the highest gradient. This method is expected to be used to optimize the path discovery. Based on the test results, the use of the proposed ACO modification can obtain an average value of the Peak Signal to Noise Ratio (PSNR) of 12.724. Meanwhile, the use of the traditional ACO can obtain an average value of PSNR of 12.268. These results indicate that the ACO modification is capable of generating output image better than traditional ACO in which ants are initially distributed randomly.Keywords: Ant Colony Optimization, gradient, Edge Detection, Peak Signal to Noise Ratio Abstrak. Ant Colony Optimization (ACO) merupakan algoritma optimasi, yang dapat digunakan untuk deteksi tepi pada citra Pada ACO tradisional, semut awal disebarkan secara acak. Kondisi ini dapat menyebabkan ketidakseimbangan distribusi semut. Berdasarkan permasalahan tersebut, modifikasi distribusi semut pada ACO diusulkan untuk mengoptimalkan penempatan semut berdasarkan gradient. Nilai gradient digunakan untuk menentukan penempatan semut. Semut tidak disebar secara acak akan tetapi ditempatkan di gradient tertinggi. Cara ini diharapkan dapat digunakan untuk optimasi penemuan jalur. Berdasarkan hasil uji coba, dengan menggunakan ACO modifikasi yang diusulkan dapat diperoleh nilai rata-rata Peak Signal to Noise Ratio (PSNR) 12,724. Sedangkan, menggunakan ACO tradisional diperoleh nilai rata-rata PSNR 12,268. Hasil ini menunjukkan bahwa ACO modifikasi mampu menghasilkan citra keluaran yang lebih baik dibandingkan ACO tradisional yang sebaran semut awalnya dilakukan secara acak.Kata Kunci: Ant Colony Optimization, gradient, deteksi tepi, Peak Signal to Noise Ratio
Kombinasi Fitur Bentuk, Warna dan Tekstur untuk Identifikasi Kesuburan Telur Ayam Kampung Sebelum Inkubasi Rohman Dijaya; Nanik Suciati; Darlis Herumurti
Jurnal Buana Informatika Vol. 7 No. 3 (2016): Jurnal Buana Informatika Volume 7 Nomor 3 Juli 2016
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24002/jbi.v7i3.659

Abstract

Abstract. In the chicken nursery industry (doc) hatching efficiency is obtained by observing the eggs through candling before the incubation process. To sort out infertile eggs the use of fertility image identification thought egg candling is needed before incubation. The focus of this study is to combine the features of shape, texture and color to the area and egg yolk to determine the most dominant features in the image representing firtile egg candling. Features used in this study are the feature of forms: roundness, elongation, Index, Ellips Varriance and Circularity Ratio, moment invariant texture features of the area and the egg yolk, and features HSI color in egg yolks area. The test results show that the highest accuracy is on the features of the new forms of egg yolk with an accuracy of 76.67%. The second highest is shown by the combination of form features (Circularity Ratio, Ellips Varriance) and texture features in the area moment yolk color features HSI with 81.67% accuracy using SVM classification method.Keywords: Egg candling imagery, fertile, infertile, incubation Abstrak. Pada industri pembibitan ayam (doc) efisiensi penetasan telur ayam didapatkan dengan melakukan candling (peneropongan telur) sebelum proses inkubasi menggunakan mesin tetas. Untuk mengklasifikasikan telur fertile dan infertile dibutuhkan identifikasi kesuburan telur menggunakan citra candling sebelum inkubasi. Fokus dari penelitian ini adalah mengkombinasikan fitur bentuk, tekstur dan warna pada area kuning telur dan telur untuk mengetahui fitur yang paling dominan dalam merepresentasikan citra candling telur ayam kampung. Fitur yang digunakan dalam penelitian ini adalah fitur bentuk (Roundness, Elongation, Index, Ellips Varriance dan Circularity Ratio), fitur tektur moment invarian dari area telur dan kuning telur dan fitur warna HSI pada area kuning telur. Hasil pengujian menunjukkan akurasi tertinggi pada fitur bentuk kuning telur baru dengan akurasi 76,67% dan kombinasi fitur bentuk (Circularity Ratio, Ellips Varriance), fitur tekstur moment pada area kuning telur dengan fitur warna HSI dengan akurasi 81,67 % menggunakan metode klasifikasi SVM. Kata Kunci: Citra candling telur, fertile, infertile, inkubasi.