Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Briliant: Jurnal Riset dan Konseptual

Random Forest Regression Untuk Prediksi Produksi Daya Pembangkit Listrik Tenaga Surya Raharjo, Agus Budi; Ardianto, Ardianto; Purwitasari, Diana
BRILIANT: Jurnal Riset dan Konseptual Vol 7 No 4 (2022): Volume 7 Nomor 4, November 2022
Publisher : Universitas Nahdlatul Ulama Blitar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (935.32 KB) | DOI: 10.28926/briliant.v7i4.1036

Abstract

Pembangkit listrik tenaga surya (PLTS) menjadi solusi yang paling popular dan diterapkan dibanyak negara. Namun interkoneksi PLTS ke sistem jaringan transmisi listrik menghadirkan permasalahan kepada operator jaringan dikarenakan memiliki sifat fluktuasi dalam menghasilkan energi listrik. Faktor-faktor yang berpotensi mempengaruhi sifat fluktuasi energi listrik adalah meteorologi dan parameter cuaca. Salah satu langkah mitigasi untuk mengatasi kondisi tersebut yaitu dengan memprediksi produksi keluaran daya PLTS. Penelitian ini mengajukan metode prediksi produksi daya dengan pra-proses data, penerapan model regresi, serta penentuan skenario uji coba. Data histori PLTS berasal dari sistem SCADA selama setahun yang terdiri atas faktor nilai produksi keluaran daya, radiasi, suhu lingkungan, suhu peralatan, dan kecepatan angin. Data yang telah diolah selanjutnya dimodelkan menggunakan algoritma Random Forest Regression (RFR). Dalam proses pemodelan dilakukan skenario pengaturan beberapa parameter, seperti proses perbaikan hilang rekam, normalisasi data dan filter produksi. Evaluasi dilakukan dengan menganalisis perbandingan kinerja setiap algoritma beserta kombinasi skenarionya. Hasil eksperimen menunjukkan bahwa RFR mempunyai kinerja tinggi dengan nilai R2 sebesar 0.9679 dan RMSE sebesar 0.0438. Pemilihan skenario yang tepat terbukti memberi peningkatan kinerja akurasi sebesar RFR 2,90%.
Analisis Laporan Gangguan Pelanggan Menggunakan Kombinasi Regresi Linear Berganda dan Klasifikasi Decision Tree Untuk Penentuan Komposisi Tim Yantek (Studi Kasus PLN UP3 Makassar Selatan) Raharjo, Agus Budi; Budiyono, Yanuardhi Arief; Purwitasari, Diana
BRILIANT: Jurnal Riset dan Konseptual Vol 7 No 4 (2022): Volume 7 Nomor 4, November 2022
Publisher : Universitas Nahdlatul Ulama Blitar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (464.949 KB) | DOI: 10.28926/briliant.v7i4.1037

Abstract

PT PLN (Persero) terus berupaya meningkatkan layanan kepada pelanggan dalam hal durasi penanganan laporan gangguan pelanggan melalui implementasi command center. Dengan total pelanggan 549.649, command center PLN UP3 Makassar Selatan bertujuan untuk memusatkan pemantauan laporan gangguan pelanggan dan pengaturan petugas pelayanan teknik di lapangan untuk mempercepat durasi penanganan laporan gangguan pelanggan. Dalam rentang waktu tiga tahun sejak Januari 2019 hingga Desember 2021, PLN UP3 Makassar Selatan memiliki laporan gangguan pelanggan sebanyak 225.309 laporan. Penelitian ini bertujuan untuk memprediksi pemenuhan durasi penanganan laporan gangguan sesuai penetapan target kinerja UP3 Makassar Selatan. Analisis prediksi menggunakan metode Regresi Linear pada variabel jumlah laporan dengan target durasi penanganan gangguan pada data laporan gangguan pelanggan yang bersumber dari Aplikasi Keluhan dan Pelayanan Terpadu (APKT). Selanjutnya klasifikasi menggunakan metode Decission Tree untuk mengetahui durasi penanganan gangguan memenuhi target kinerja atau tidak. Hasil penelitian menunjukkan bahwa metode yang diajukan memberikan kinerja yang baik berdasarkan evaluasi Coefficient of Determination (R2), Root Mean Square Error (RMSE), dan ROC Curve. Model yang dibangun diharapkan dapat diimplementasikan kedalam sistem pengaturan petugas teknik sehingga memberikan komposisi jumlah tim untuk menurunkan durasi penanganan laporan gangguan.