Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Real-time military person detection and classification system using deep metric learning with electrostatic loss Suprayitno, Suprayitno; Fauzi, Willy Achmat; Ain, Khusnul; Yasin, Moh.
Bulletin of Electrical Engineering and Informatics Vol 12, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i1.4284

Abstract

This study addressed a system design to detect the presence of military personnel (combatants or non-combatants) and civilians in real-time using the convolutional neural network (CNN) and a new loss function called electrostatic loss. The basis of the proposed electrostatic loss is the triplet loss algorithm. Triplet loss’ input is a triplet image consisting of an anchor image (xa), a positive image (xp), and a negative image (xn). In triplet loss, xn will be moved away from xa but not far from both xa and xp. It is possible to create clusters where the intra-class distance becomes large and does not determine the magnitude and direction of xn displacement. As a result, the convergence condition is more difficult to achieve. Meanwhile, in electrostatic loss, some of these problems are solved by approaching the electrostatic force on charged particles as described in Coulomb's law. With the inception ResNet-v2 128-dimensional vectors network within electrostatic loss, the system was able to produce accuracy values of 0.994681, mean average precision (mAP) of 0.994385, R-precision of 0.992908, adjusted mutual information (AMI) of 0.964917, and normalized mutual information (NMI) of 0.965031.