Claim Missing Document
Check
Articles

Found 19 Documents
Search

Analisis Pemilihan Supplier Pada Pengadaan Suku Cadang dengan Metode Analytic Hierarchy Process Naufal, Mohammad Farid; Putra, Putu Aditya Riva; Kusuma, Selvia Ferdiana
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 5, No 1 (2021): EDISI MARET
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (865.565 KB) | DOI: 10.30645/j-sakti.v5i1.328

Abstract

PT. Bali Age is a company which engaged in freight forwarding service. Because of this, the company is using the trucks for carry out of their operational activities. Every truck always gets a routine maintenance at their garage, so they must provide the spare parts stock by themselves. The currently procurement of spare parts are still based on paper. By implementing the decision support in a new procurement system, it can provide a supplier recommendation for this company. This supplier recommendation which provides by system, are getting from the result of the comparation value from criteria priority calculation, using AHP method. The AHP method that implemented in this system, can also provide the final result of supplier recommendation comparison value with accurately.
Rancang Bangun Sistem Informasi Survei Kepegawaian Kantor Pelayanan Perbendaharaan Negara Kediri Berbasis Web Kusuma, Selvia Ferdiana; Naufal, Mohammad Farid; Aminulloh, Septian Wijaya; Vernolyo, Panji Yumadana
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 5, No 1 (2021): EDISI MARET
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1246.379 KB) | DOI: 10.30645/j-sakti.v5i1.329

Abstract

The State Treasury Service Office in Kediri is one of the services of the state general treasurer in the city of Kediri. The function of the State Treasury Service Office in Kediri, which is responsible for channeling the budget according to its allocation as stipulated in the APBN Law. In order to maintain the quality of the services provided, the State Treasury Service Office in Kediri always carries out supervision. Currently, the employment survey is conducted using the google form. However, the use of this form of google is not optimal. This is because there is no final cost for the staffing survey that has been carried out and there is no report on the results of the survey that has been carried out. Therefore, this study makes a web-based design of the personnel survey information system at the State Treasury Service Office in Kediri. This information system uses the programming language PHP and Javascript (EcmaScript 6) with the MySQL database. Based on the experiments that have been done, all the features in this information system can work according to their function. The design of this information system can help the State Treasury Service Office in Kediri to conduct the performance survey process more efficiently.
Named Entity Recognition in Medical Domain: A systematic Literature Review Kusuma, Selvia Ferdiana; Wibowo, Prasetyo; Abdillah, Abid Famasya; Basuki, Setio
JOIV : International Journal on Informatics Visualization Vol 8, No 4 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.4.3111

Abstract

Biomedical Named Entity Recognition (BioNER) is essential to bioinformatics because it identifies and classifies biological entities in biomedical texts. With the increasing number of biomedical literature and the rapid progress of the BioNER approach, it is essential to conduct a systematic literature review (SLR) on BioNER. This SLR consolidates existing information and provides directions for future studies in the BioNER field. This review systematically explores scientific journals and conferences published from 2019 to 2024. This research uses PubMed and Scholar as reference search databases because of their affiliation with other well-known publishers such as IEEE, Elsevier, and Springer. The results show a transition from conventional machine learning to deep learning. Neural networks and transformers show better performance in deep learning methods. The datasets often used in BioNER development are BC2GM, BC5CDR, and NCBI-Disease. Precision, Recall, and F1-Score are used in most papers to evaluate model performance. The performance of these models mostly depends on the availability of big annotated datasets and significant computational tools. Therefore, it is vital for future research to address the issues of annotated data and resource availability to build accurate models. Researchers should investigate the creation of ideal designs that lower computing complexity without compromising performance. Overall, this SLR offers a thorough overview of the latest research on BioNER. It provides significant insights for academics and practitioners in bioinformatics and medical research, helping them understand the innovative aspects of BioNER research.
Pendeteksi Citra Masker Wajah Menggunakan CNN dan Transfer Learning Naufal, Mohammad Farid; Kusuma, Selvia Ferdiana
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 6: Desember 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021865201

Abstract

Pada tahun 2021 pandemi Covid-19 masih menjadi masalah di dunia. Protokol kesehatan diperlukan untuk mencegah penyebaran Covid-19. Penggunaan masker wajah adalah salah satu protokol kesehatan yang umum digunakan. Pengecekan secara manual untuk mendeteksi wajah yang tidak menggunakan masker adalah pekerjaan yang lama dan melelahkan. Computer vision merupakan salah satu cabang ilmu komputer yang dapat digunakan untuk klasifikasi citra. Convolutional Neural Network (CNN) merupakan algoritma deep learning yang memiliki performa bagus dalam klasifikasi citra. Transfer learning merupakan metode terkini untuk mempercepat waktu training pada CNN dan untuk mendapatkan performa klasifikasi yang lebih baik. Penelitian ini melakukan klasifikasi citra wajah untuk membedakan orang menggunakan masker atau tidak dengan menggunakan CNN dan Transfer Learning. Arsitektur CNN yang digunakan dalam penelitian ini adalah MobileNetV2, VGG16, DenseNet201, dan Xception. Berdasarkan hasil uji coba menggunakan 5-cross validation, Xception memiliki akurasi terbaik yaitu 0.988 dengan waktu total komputasi training dan testing sebesar 18274 detik. MobileNetV2 memiliki waktu total komputasi tercepat yaitu 4081 detik dengan akurasi sebesar 0.981. AbstractIn 2021 the Covid-19 pandemic is still a problem in the world. Therefore, health protocols are needed to prevent the spread of Covid-19. The use of face masks is one of the commonly used health protocols. However, manually checking to detect faces that are not wearing masks is a long and tiring job. Computer vision is a branch of computer science that can be used for image classification. Convolutional Neural Network (CNN) is a deep learning algorithm that has good performance in image classification. Transfer learning is the latest method to speed up CNN training and get better classification performance. This study performs facial image classification to distinguish people using masks or not by using CNN and Transfer Learning. The CNN architecture used in this research is MobileNetV2, VGG16, DenseNet201, and Xception. Based on the results of trials using 5-cross validation, Xception has the best accuracy of 0.988 with a total computation time of training and testing of 18274 seconds. MobileNetV2 has the fastest total computing time of 4081 seconds with an accuracy of 0.981.
Natural Language Processing untuk Otomatisasi Pengenalan Pronomina dalam Kalimat Bahasa Indonesia Naufal, Mohammad Farid; Kusuma, Selvia Ferdiana
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 5: Oktober 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022946394

Abstract

Pronomina (kata ganti) adalah jenis kata yang dapat dipakai untuk menggantikan posisi kata benda atau orang dalam suatu kalimat. Penggunaan pronomina akan mudah dipahami apabila serangkaian kalimat dibaca secara utuh. Namun jika rangkaian kalimat tersebut hanya dibaca pada kalimat-kalimat tertentu, maka akan sulit memahami kalimat yang memiliki pronomina. Pada pengolahan bahasa alamiah, diperlukan kejelasan konteks dari sebuah kalimat. Dalam konteks otomatisasi pengolahan bahasa alamiah, adanya pronomina dapat menyulitkan komputer untuk memahami kalimat tersebut. Oleh sebab itu, dalam pengolahan bahasa alamiah yang mengandung pronomina diperlukan pre proses berupa pengubahan pronomina ke dalam bentuk subjek atau objek asli yang dirujuk. Metode yang diusulkan untuk menyelesaikan permasalahan ini adalah pendekatan berbasis sintaktik. Pendekatan ini menitikberatkan pada struktur kata yang digunakan dan struktur komponen kata yang digunakan. Metode yang diusulkan memiliki 4 tahapan yakni pengumpulan data, pembangkitan aturan, otomatisasi pengenalan pronominal, dan terakhir adalah evaluasi.  Metode yang diusulkan telah diujicobakan untuk mengenali adanya pronomina dari kalimat-kalimat pada materi Ilmu Pengetahuan Alam dan Ilmu Pengetahuan Sosial di jenj­­ang sekolah dasar. Hasil evaluasi menunjukkan bahwa metode yang diusulkan dapat digunakan untuk mengubah subjek yang berbentuk pronomina menjadi subjek atau objek asli yang dirujuk. Rata-rata akurasi yang didapatkan sebesar 81%. Akurasi tersebut didapatkan dari perbandingan antara jumlah kata ganti yang berhasil diidentifikasi subjeknya dengan keseluruhan data uji. Hasil dari penelitian ini dapat digunakan peneliti di bidang Natural Language Processing untuk melakukan praproses terhadap teks yang akan diolah. AbstractA pronoun is a word that can be used to replace a noun or person in a sentence. The use of pronouns will be easy to understand if a series of sentences is read in its entirety. However, if the sentence series is only read in specific sentences, it will be difficult to understand sentences with pronouns. In natural language processing, it is necessary to clarify the context of a sentence. In the context of automation of natural language processing, the existence of pronouns can make it difficult for computers to understand the sentence. Therefore, in processing natural language containing pronouns, it is necessary to pre-process in the form of converting pronouns into the form of the original subject or object referred to. The method proposed to solve this problem is a syntactic-based approach. This approach focuses on the structure of the words used and the word components used. The proposed method has 4 stages, namely data collection, rule generation, automation of pronoun recognition and the last is evaluation. The proposed method has been evaluated to identify the existence of pronouns from sentences in the Natural Sciences and Social Sciences material at the elementary school level. The evaluation results show that the proposed method can be used to change the subject in the form of a pronoun into the original subject or object referred to. The average accuracy obtained is 81%. The accuracy is obtained from the comparison between the number of pronouns that have been identified with the overall test data. Researchers in natural language processing can use the results of this study to pre-process their text.  
Otomatisasi Pembangkitan Pertanyaan untuk Bahasa Indonesia (Systematic Literature Review) Naufal, Mohammad Farid; Kusuma, Selvia Ferdiana
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 1: Februari 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023106455

Abstract

Penelitian tentang otomatisasi pembangkitan pertanyaan terus berkembang. Berbagai metode telah coba diterapkan pada berbagai bahasa. Setiap bahasa memiliki karakteristik yang berbeda beda. Oleh karena itu, metode yang digunakan untuk membangkitkan pertanyaan juga harus disesuaikan dengan bahasa yang digunakan. Otomatisasi pembangkitan pertanyaan untuk bahasa Indonesia juga sudah mulai berkembang sejak 2015. Hasil penelitian-penelitian tersebut perlu dianalisis agar dapat mengetahui kelebihan maupun kekurangan dari setiap metode yang pernah digunakan. Oleh karena itu, jurnal ini membahas tentang Systematic Literature Review (SLR) pembangkitan pertanyaan pada bahasa Indonesia. SLR yang dibangun ini dapat digunakan untuk bahan pertimbangan optimalisasi penelitian tentang pembangkitan pertanyaan menggunakan bahasa Indonesia di kemudian hari. Tahapan yang dilakukan dalam pembentukan SLR adalah perencanaan literature review, kemudian melakukan literature review dan terakhir adalah pelaporan hasil literature review. Pencarian pada google scholar menghasilkan 27 penelitian yang relevan dengan kata kunci. Penerapan kriteria inklusi dan eksklusi menghasilkan 15 penelitian yang relevan. Kemudian proses backward dan forward snowballing yang dilakukan menghasilkan 2 penelitian tambahan. Total penelitian yang dianalisis berjumlah 17 penelitian. Proses selanjutnya adalah penilaian kualitas penelitian. Hasil penilaian kualitas penelitian menunjukkan bahwa keseluruhan penelitian yang berjumlah 17 penelitian tersebut memiliki kualitas yang baik untuk dianalisis. Hasil analisis yang dilakukan menunjukkan bahwa penelitian awal terkait pembangkitan pertanyaan untuk bahasa Indonesia masih memiliki beberapa celah. Diantaranya terkait dataset yang belum memadai, model pertanyaan yang kurang beragam, belum adanya penanganan/preproses model kalimat unstructured, dan belum adanya pembangkitan pertanyaan yang berasal dari gabungan beberapa informasi. AbstractResearch on automated question generation is constantly evolving. Various methods have been tried to be applied in various languages. Each language has different characteristics. Therefore, the method used to generate questions should be adapted based on the language. The automation of question generation for Indonesian has also begun to develop since 2015. The result of these studies need to be analyzed to find out the advantages and disadvantages of each method that has been used. Therefore, this journal discusses the Systematic Literature Review (SLR) for generating questions in Indonesian. The SLR that was built can be used for consideration of optimizing research on generating questions using Indonesian in the future. The steps taken in this SLR are planning analysis, then carrying out the analysis and finally reporting the analysis. A search on Google Scholar yielded 27 studies that were relevant to the keyword. The application of inclusion and exclusion criteria resulted in 15 relevant studies. Then the backward and forward snowballing processes carried out resulted in 2 additional studies. Total research analyzed amounted to 17 studies. The next process is the assessment of research quality. The results of the research quality assessment showed that the overall 17 studies had good quality for analysis. The results of the analysis carried out indicate that the initial research related to question generation for Indonesian still has some gaps. For examples about datasets, question models, handling unstructured sentence models, and generating questions from a combination of some information.
Analisis Perbandingan Algoritma Machine Learning dan Deep Learning untuk Klasifikasi Citra Sistem Isyarat Bahasa Indonesia (SIBI) Naufal, Mohammad Farid; Kusuma, Selvia Ferdiana
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 4: Agustus 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2024106823

Abstract

Terdapat orang yang tidak mampu berkomunikasi secara verbal yang menyebabkan kesulitan dalam berkomunikasi. Orang tersebut mengalami gangguan seperti tuli atau bisu. Mereka hanya dapat berkomunikasi melalui bahasa isyarat salah satunya adalah Sistem Isyarat Bahasa Indonesia (SIBI). Pengenalan Bahasa Isyarat adalah permasalahan klasifikasi yang kompleks untuk dipecahkan. Setiap bahasa isyarat memiliki sintaks dan tata bahasanya sendiri. Computer vision adalah sebuah Teknik yang digunakan komputer untuk melakukan klasifikasi citra. Computer vision membantu pengenalan citra SIBI secara otomatis sehingga memudahkan orang normal berkomunikasi dengan orang tuli atau bisu. Pada penelitian sebelumnya belum ada yang melakukan perbandingan algoritma klasifikasi machine learning dan deep learning untuk pengenalan SIBI. Perbandingan penting dilakukan untuk melihat efektifitas tiap algoritma klasifikasi dalam hal performa klasifikasi dan waktu komputasi. Algoritma klasifikasi machine learning memiliki waktu komputasi lebih rendah sedangkan Deep learning memiliki performa klasifikasi lebih tinggi. Penelitian ini menganalisis time to performance dari algoritma machine learning dan deep learning dalam melakukan klasifikasi citra SIBI huruf A hingga Z. K-Nearest Neighbors (KNN), Support Vector Machine (SVM), dan Convolutional neural network (CNN) dengan transfer learning adalah tiga algorimta klasifikasi populer yang dibandingkan dalam penelitian ini. Arsitektur transfer learning yang digunakan adalah Xception, ResNet50, VGG15, dan MobileNetV2. Dari hasil penelitian yang dilakukan menggunakan 5 cross validation, CNN dengan arsitektur Xception memiliki nilai F1 Score tertinggi yaitu 99,57% dengan waktu training rata-rata 1.387 detik. Sedangkan KNN dengan nilai K = 1 memiliki waktu training tercepat yaitu 0,03 detik dan memiliki nilai F1 Score 86,95%.AbstractThe person who has a disorder such as deaf or dumb are unable to communicate verbally, which causes difficulties in communicating. They can only communicate through sign language, one of which is the Indonesian Language Sign System or Sistem Isyarat Bahasa Indonesia (SIBI). Sign Language Recognition is a complex classification problem to solve. Each sign language has its syntax and grammar. Computer vision is a technique used by computers to classify images. Computer vision helps automatically recognize SIBI images, making it easier for normal people to communicate with deaf or mute people. In previous studies, no one has compared machine learning and deep learning classification algorithms for the classification of SIBI. Therefore, a meaningful comparison is made to see each classification algorithm's effectiveness in classification performance and computation time. Machine learning classification algorithms have lower computation time, while Deep learning has higher classification performance. This study analyzes the time to performance of machine learning and deep learning algorithms in classifying SIBI images of letters A to Z. K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Convolutional neural network (CNN) with transfer learning are three popular classification algorithms compared in this study. The transfer learning architectures used are Xception, ResNet50, VGG15, and MobileNetV2. The results of research conducted using 5 cross-validation, CNN with the Xception architecture has highest F1 Score of 99.57%, with an average training time of 1.387 seconds. KNN, with a value of K = 1, has the fastest training time of 0.03 seconds and an F1 Score of 86.95%.
Penerapan Aplikasi Klasifikasi Hukum Tajwid Menggunakan Image Processing Kindarya, Fabyan; Kusumaningtyas, Entin Martiana; Barakbah, Aliridho; Permatasari, Desy Intan; Al Rasyid, M. Udin Harun; Ramadijanti, Nana; Fariza, Arna; Syarif, Iwan; Sa'adah, Umi; Saputra, Ferry Astika; Ahsan, Ahmad Syauqi; Sumarsono, Irwan; Yunanto, Andhik Ampuh; Edelani, Renovita; Primajaya, Grezio Arifiyan; Kusuma, Selvia Ferdiana
El-Mujtama: Jurnal Pengabdian Masyarakat  Vol. 4 No. 2 (2024): El-Mujtama: Jurnal Pengabdian Masyarakat
Publisher : Intitut Agama Islam Nasional Laa Roiba Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47467/elmujtama.v4i2.1930

Abstract

Tajwid is an important science that regulates the way of reading the verses of the Al-Qur’an properly. Learning Tajwid means knowing the meaning that corresponds to the correct recitation. Learning to read the Al-Qur’an tends to be done traditionally in a place of learning or by calling a teacher to the house. Learning in this way has some drawbacks, such as the limited availability of trained and competent teachers because not all areas have sufficient access to these teachers. Dependence on schedules and locations can be a constraint for students with limited mobility or busy schedules. The role of the teacher is still important in learning tajwid, especially in providing effective explanations, guidance, and feedback. However, to overcome these shortcomings, integration with independent and technology-based learning methods can help improve the accessibility, flexibility, and quality of tajwid learning. The classification of tajwid laws using image processing allows users to see the results of inputting images of verses of the Al-Qur’an into the type of detected nun sukun tajwid and how to recite it. The initial stage of this system in detecting tajwid laws from uploaded images is the input of images by users, which can be done in two ways, namely by directly taking pictures using a smartphone camera or uploading images from the gallery. This is followed by the OCR process to detect the Arabic text contained in the image and provide diacritics for that Arabic text. Finally, letter classification is carried out after nun sukun and classification of tajwid laws contained in accordance with the detected letters after nun sukun. This system has an accuracy rate of 92.18% from the classification results that have been carried out.
Implementasi Sistem Antrian Online dan On-site di Kelurahan Gebang Putih Surabaya untuk Meningkatkan Efisiensi Layanan Publik Aziz, Adam Shidqul; Mubtadai, Nur Rosyid; Permatasari, Desy Intan; Saputra, Ferry Astika; Syarif, Iwan; Fariza, Arna; Al Rasyid, M. Udin Harun; Kusuma, Selvia Ferdiana; Sumarsono, Irwan; Ahsan, Ahmad Syauqi; Sa'adah, Umi; Yunanto, Andhik Ampuh; Primajaya, Grezio Arifiyan; Edelani, Renovita; Ramadijanti, Nana; Khoirunnisa, Asy Syaffa; Alfaqih, Wildan Maulana Akbar; Al Falah, Adam Ghazy
El-Mujtama: Jurnal Pengabdian Masyarakat  Vol. 5 No. 2 (2025): El-Mujtama: Jurnal Pengabdian Masyarakat
Publisher : Intitut Agama Islam Nasional Laa Roiba Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47467/elmujtama.v5i2.6239

Abstract

Digitalization is an important step in improving the efficiency of public services, particularly in managing queues in government institutions such as sub-district offices. Kelurahan Gebang Putih Surabaya faces significant challenges in managing its manual queue system, which often results in discomfort for the public due to long waiting times, exceeding 5 minutes. This reduces public satisfaction and causes inefficiencies in the queue process. To address this issue, this study aims to develop and implement a digital queue system that can be accessed both online and on-site, using the User-Centered Design (UCD) approach. This approach ensures that every aspect of the system's design and development focuses on user needs through an iterative process, where the design is adjusted based on direct feedback from users. The proposed solution in this study includes the creation of a mobile and website-based queue system, allowing the public to easily take a queue number online and also enabling quick on-site queueing with a wait time of less than 10 seconds. Another advantage of this system is its automated reporting feature, which facilitates documentation and queue reports, thereby accelerating administration and monitoring to the city government. The results show that the implementation of this system significantly reduces the queue-taking time from over 5 minutes to less than 10 seconds, successfully transforming the manual system into a more efficient digital system, and streamlining the reporting process to the government, which in turn improves the quality and satisfaction of public services.