Claim Missing Document
Check
Articles

Analisa Antimagicness Super dari Shackle Graf Parasut dan Aplikasinya pada Polyalphabetic Cipher Riza Nurfadila; Ika Hesti Agustin; Kusbudiono Kusbudiono
CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS Vol 2, No 1 (2021): CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS
Publisher : jcgant

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (424.634 KB) | DOI: 10.25037/cgantjma.v2i1.50

Abstract

Super (\emph{a,d})-$\mathcal{H}$-antimagic total covering on a graph \emph{G}=(\emph{V,E}) is the total labeling of $\lambda$ of \emph {V(G)} $\cup$ \emph{E(G)} with positive integers \{1, 2, 3,\dots ,$|V(G) \cup E(G)|$\}, for any subgraph \emph{H'} of \emph{G} that is isomorphic to \emph{H} where $\sum$ \emph{H'} = $\sum_{v \in V(H)} \lambda (v ) + \sum_{e \in E(H)} \lambda (e)$ is an arithmetic sequence \{\emph{a, a+d, a+2d,\dots,a+(s-1)d}\} where \emph{a}, \emph{d} are positive numbers where \emph{a} is the first term, \emph{d} is the difference, and \emph{s} is the number of covers. If $\lambda(v)_{v \in V} = {1,2,3,\dots,|V(G)|}$ then the graph \emph{G} have the label of super $\mathcal{H}$-antimagic covering. One of the techniques that can be applied to get the super antimagic total covering on the graph is the partition technique. Graph applications that can be developed for super antimagic total covering are \emph{ciphertext} and \emph{streamcipher}. \emph{Ciphertext} is an encrypted message and is related to cryptography. \emph{Stream cipher} is an extension of \emph{Ciphertext}. This article study the super (a,d)-$\mathcal{H}$-antimagic total covering on the shackle of parachute graph and its application in \emph{ciphertext}. The graphs that used in this article are some parachute graphs denoted by \emph{shack}($\mathcal{P}_{m},e,n$).
Analisis rainbow vertex connection pada beberapa graf khusus dan operasinya Ida Ariska; Ika Hesti Agustin; Kusbudiono Kusbudiono
CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS Vol 3, No 1 (2022): CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS
Publisher : jcgant

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25037/cgantjma.v3i1.78

Abstract

The vertex colored graph G is said rainbow vertex cennected, if for every two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex connection number of G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex connected. On this research, will be raised the issue of how to produce graphs the results of some special graph and how to find the rainbow vertex connection. Operation that use cartesian product, crown product, and shackle. Theorem in this research rainbow vertex connection number in graph the results of operations Wd3,m □ Pn,,Wd3,m ⵙ Pn, and shack(Btm,v,n).
The Distance Irregular Reflexive k-Labeling of Graphs Ika Hesti Agustin; Dafik Dafik; N. Mohanapriya; Marsidi Marsidi; Ismail Naci Cangul
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 7, No 4 (2023): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i4.19747

Abstract

A total k-labeling is a function fe from the edge set to the set {1, 2, . . . , ke} and a function fv from the vertex set to the set {0, 2, 4, . . . , 2kv}, where k = max{ke, 2kv}. A distance irregular reflexive k-labeling of the graph G is the total k-labeling, if for every two different vertices u and u 0 of G, w(u) 6= w(u 0 ), where w(u) = Σui∈N(u)fv(ui) + Σuv∈E(G)fe(uv). The minimum k for graph G which has a distance irregular reflexive k-labelling is called distance reflexive strength of the graph G, denoted by Dref (G). In this paper, we determine the exact value of distance reflexive strength of some connected graphs, namely path, star, and friendship graph.
Pendampingan Literasi, Numerasi, Adaptasi Teknologi, Administrasi Serta Memperkenalkan Kurikulum Merdeka Di SMP Negeri 4 Silo Nuraeni Mauliddatul Fikria; Marsidi Marsidi; Ika Hesti Agustin
Dedication : Jurnal Pengabdian Masyarakat Vol 7 No 1 (2023)
Publisher : LPPM Universitas PGRI Argopuro Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31537/dedication.v7i1.1035

Abstract

Program Merdeka Belajar Kampus Merdeka (MBKM) adalah salah satu program yang diselengarakan oleh Kemdikbud. Program Kampus Mengajar merupakan salah satu program dalam MBKM yang memiliki tujuan untuk mengajar, membantu teknologi, dan membantu administrasi sekolah dan guru. Salah satu sekolah yang menjadi sasaran dari program Kampus Mengajar adalah SMP Negeri 4 Silo yang terletak di Desa Silo, Kec. Silo, Kab. Jember. Pada program ini, mahasiswa yang telah lolos dalam mengikuti seleksi dari program MBKM untuk menjalankan tugas dan memiliki tanggung jawab dalam membantu pihak sekolah dalam proses Mengajar, membantu adaptasi terhadap teknologi, membantu administrasi sekolah dan memiliki tanggung jawab dalam memperbaiki karakter siswa serta meningkatkan minat belajar terutama literasi dan numerasi siswa. Tujuan dari keikutsertaan mahasiswa dalam program Kampus Mengajar ini merupakan sebuah proses dalam menambah relasi, menambah pengalaman di luar dunia perkuliahan, mengembangkan wawasan, karakter dan soft skills mahasiswa, serta meningkatkan peran dan kontribusi nyata perguruan tinggi dan mahasiswa dalam pembangunan pendidikan di Indonesia.
Pelatihan Membuat Majalah Dinding Untuk Meningkatkan Budaya Literasi Siswa SMP Sultan Agung Puger Ukas Alif Fuadi; Marsidi Marsidi; Ika Hesti Agustin
Dedication : Jurnal Pengabdian Masyarakat Vol 7 No 2 (2023)
Publisher : LPPM Universitas PGRI Argopuro Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31537/dedication.v7i2.1393

Abstract

Pada era globalisasi yang terus berkembang sedemikian pesatnya, banyak terjadi fluktuasi minat baca di Indonesia. Untuk itu, diperlukan media yang lebih informatif, singkat, padat dan jelas, serta tidak berdampak negatif pada kesehatan anak. Banyak siswa di SMP Sultan Agung yang memiliki minat rendah dalam hal literasi. Perlunya pemupukan minat literasi terhadap siswa dapat dilakukan dengan melatih siswa-siswinya untuk membuat majalah dinding. Pelatihan pembuatan majalah dinding di SMP Sultan Agung dilakukan secara berkala selama 3 bulan. Dampak pelatihan ini juga dapat terlihat dalam peningkatan kerjasama dan rasa kebersamaan di antara siswa-siswa. Mereka bekerja dalam kelompok, saling membantu, dan menghargai kontribusi masing-masing anggota tim. Proses kolaboratif ini tidak hanya menghasilkan majalah dinding yang berkualitas, tetapi juga memperkuat hubungan sosial dan membangun kemampuan kerja tim yang berharga bagi siswa.
The Distance Irregular Reflexive k-Labeling of Graphs Agustin, Ika Hesti; Dafik, Dafik; Mohanapriya, N.; Marsidi, Marsidi; Cangul, Ismail Naci
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 7, No 4 (2023): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v7i4.19747

Abstract

A total k-labeling is a function fe from the edge set to the set {1, 2, . . . , ke} and a function fv from the vertex set to the set {0, 2, 4, . . . , 2kv}, where k = max{ke, 2kv}. A distance irregular reflexive k-labeling of the graph G is the total k-labeling, if for every two different vertices u and u 0 of G, w(u) 6= w(u 0 ), where w(u) = Σui∈N(u)fv(ui) + Σuv∈E(G)fe(uv). The minimum k for graph G which has a distance irregular reflexive k-labelling is called distance reflexive strength of the graph G, denoted by Dref (G). In this paper, we determine the exact value of distance reflexive strength of some connected graphs, namely path, star, and friendship graph.
On The Edge Irregular Reflexive k-Labeling of Some Cartesian Product Graphs Rosita, Merlinda; Marsidi, Marsidi; Sulisawati, Dwi Noviani; Agustin, Ika Hesti
Jurnal Ilmiah Soulmath : Jurnal Edukasi Pendidikan Matematika Vol 12 No 2 (2024)
Publisher : Universitas Dr. Soetomo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25139/smj.v12i2.8691

Abstract

Let G be a connected and simple graph with vertex set V(G) and edge set E(G). For a graph G, we define k-labeling such that the edges of G are labeled with integers {1,2,3,....,k_e} and the vertices of G are labeled with even integers {0,2,4,....,2k_v}, where k=max{k_e, 2k_v}. If there is a different weight for all edges, then the labeling is called edge irregular reflexive k-labeling. The weight of edge xy, notated by wt(xy) is defined as a sum of label of x, label of xy, and label of y. The minimum k for which G has an edge irregular reflexive k-labeling is defined as reflexive edge strength of G, symbolized by res(G). In this research, we determined the reflexive edge strength of several Cartesian graphs, namely P_5xP_n, S_4xP_n, C_5xC_n, and F_3xP_n. Keywords: Edge irregular reflexive k-labeling, reflexive edge strength, Cartesian graph.
Analysis of Rainbow Vertex Antimagic Coloring and its Application to Cryptographic Secret Sharing with Affine Cipher Technique Dafik, Dafik; Firdausiyah, Iftitahul; Adawiyah, Robiatul; Agustin, Ika Hesti; Mursyidah, Indah Lutfiyatul; Marsidi, Marsidi
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 9, No 1 (2025): January
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v9i1.28037

Abstract

Rainbow vertex antimagic coloring is a novel concept in graph theory that combines rainbow vertex connection with antimagic labeling. Rainbow vertex connection is a vertex coloring where each vertex in a simple connected graph G=(V,E) is connected by a path such that all interior vertices have distinct colors. The antimagic labeling assigns a bijective function f:E(G)→ {1,2,3,...,|E(G)|} to the edges, and the vertex weight w_f(v) = ∑_(e∈ E(v))▒〖f(e)〗, where E(v) is the set of edges adjacent to vertex ????. A graph ???? achieves rainbow vertex antimagic coloring if all its internal vertices have unique vertex weights. This research investigates the application of rainbow vertex antimagic coloring to Shadow D_2 (S_n) graphs and Amal(V_n,v,m) graphs in cryptographic secret sharing and encryption using the affine cipher technique. The study employs mathematical modeling, graph visualization tools, and cryptographic software to ensure methodological rigor. The encryption and decryption processes are evaluated based on effectiveness, including brute force test resistance, encryption time, and encryption size. The results demonstrate that rainbow vertex antimagic coloring is an effective method for dividing cryptographic keys into segments during the secret sharing stage and serves as a robust key in the affine cipher technique. The method offers significant advantages, including faster encryption times for Shadow D_2 (S_n) graphs compared to Amal(V_n,v,m) graphs and reduced encryption size for Amal(V_n,v,m) graphs. Both graphs exhibited strong resistance to brute force attacks. In conclusion, this study highlights the relevance of rainbow vertex antimagic coloring in advancing graph theory applications and its utility in developing secure and efficient cryptographic systems. These findings contribute to bridging theoretical graph concepts with practical cryptographic implementations.
On Local Antimagic b-Coloring and Its Application for STGNN Time Series Forecasting on Horizontal Farming R. Sunder; Ika Hesti Agustin; Dafik Dafik; Ika Nur Maylisa; N. Mohanapriya; Marsidi Marsidi
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 1 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i1.29968

Abstract

This article discusses a local antimagic coloring which is a combination between antimagic labeling and coloring. It is a new notion. We define a vertex weight of  as  where  is the set of edges incident to . The bijection  is said to be a local antimagic labeling if for any two adjacent vertices, their vertex weights must be distinct. Furthermore  a coloring of a graph is a proper coloring of the vertices of  such that in each color class there exists a vertex having neighbors in all other  color classes. If we assign color on each vertex by the vertex weight  such that it induces a graph coloring satisfying coloring property, then this concept falls into a local antimagic coloring of graph. A local antimagic chromatic number, denoted by , is the maximum number of colors chosen for any colorings generated by local antimagic coloring of . In this paper we initiate to explore some new lemmas or theorems regarding to . Furthermore, to see the robust application of local antimagic coloring, at the end of this paper we will analyse the implementation of local antimagic coloring on Graph Neural Networks (GNN) multi-step time series forecasting on for NPK (Nitrogen, Phosphorus, and Potassium) concentration of companion plantations.
The Reflexive H-Strength on Some Graphs Lusia Herni Sullystiawati; Marsidi Marsidi; Eric Dwi Putra; Ika Hesti Agustin
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 9, No 1 (2024): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v9i1.23172

Abstract

Let G be a connected, simple, and undirected graph with a vertex set V(G) and an edge set E(G).  The irregular reflexive -labeling is defined by the function  and  such that  if  and  if , where  max . The irregular reflexive  labeling is called an -irregular reflexive -labeling of the graph  if every two different sub graphs  and  isomorphic to  it holds , where  for the sub graph . The minimum  for graph  which has an -irregular reflexive -labelling is called the reflexive  strength of the graph  and denoted by . In this paper we determine the lower bound of the reflexive  strength of some subgraphs,  on , the sub graph  on  the sub graph  on  and the sub graph  on .