Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Modeling and Application of Credit Scoring Based on A Multi-Objective Approach to Debtor Data in PT. Bank Riau Kepri Sugianto, -; Widyasari, Yohana Dewi Lulu; Wardhani, Kartina Diah Kusuma
JOIV : International Journal on Informatics Visualization Vol 8, No 1 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.1.1493

Abstract

The development of information technology in Indonesia, marked by the start of Industry 4.0, is very rapid. With the development of technology, many companies use technology to develop their business, one of which is banking, which analyses the process of prospective customers. New employees find it challenging to interpret and tend to agree more easily with prospective customers because they only see the fulfillment of general requirements. This research aims to find an overview of the primary and additional factors to analyze prospective credit customers using The Cross-Industry Standard Process for Data Mining (CRISP-DM). Develop a model in this study using data variables of prospective customers in health insurance as a moderating variable. This model tested the Decision Tree algorithm with an accuracy value of 92.49%, the Random Forest with an accuracy value of 81.72%, the Support Vector Machine (SVM) with an accuracy value of 91.25%, and K-Nearest Neighbor (K-NN) with an accuracy value. 90.58%, Gradient Boosting with an accuracy value of 90.69%, and XGBoost with an accuracy value of 93.27%. The algorithm uses a cross-validation technique at the validation stage by changing the K value to 2, 4, 6, 8, and 10. The results show that the XGBoost Algorithm accuracy is 93.27% with a K value of 8. As the highest model accuracy, this model was implemented using the XGBoost Algorithm.
Investigation of Mobile Cloud Storage Adoption Factors in Higher Education Najwa, Nina Fadilah; Widyasari, Yohana Dewi Lulu; Trisnadoli, Anggy
JOIV : International Journal on Informatics Visualization Vol 7, No 3 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.3.1296

Abstract

Mobile cloud storage provides benefits for educational institutions. Several researchers have researched cloud computing adoption, but only a few studies related to how users experience using Personal Cloud Storage Services. This research aims to investigate the adoption of the mobile cloud storage factors following the theory, as well as research that has been previously proven related to user interest in using mobile cloud storage among higher education students. This quantitative research uses data analysis techniques using GSCA to prove the theory and achieve the research goals. The research methodology consists of five main stages, namely the stage of model development and research design, the stage of preparing the instrument and its measurement, the stage of testing the instrument, the stage of survey and results, as well as the stages of analysis and discussion as well as conclusions. Five variables are investigated in this research: knowledge sharing, perceived usefulness, attitude toward using a system, trust, and intention to use. The results of hypothesis testing were conducted using GSCA; three proposed hypotheses were accepted, and one was rejected. The variables the research model can explain are 68%, and the remaining 32% are other variables not used in this study. The characteristics of respondents can provide several ways to increase the adoption of mobile cloud computing by linking research results from inferential analysis and descriptive analysis. Future research can focus on extracting these variables through user interviews regarding students' intentions to use mobile cloud computing.